

POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Informatica e dei Sistemi – XXI ciclo

Tesi di Dottorato

Enabling Flexibility in High-Speed
Packet Processing

Olivier Morandi

Tutore

prof. Mario Baldi

Coordinatore del corso di dottorato

prof. Pietro Laface

Marzo 2009

Author Publications

Parts of the research presented in this thesis have been previously published or

presented in the following papers:

• Morandi, Olivier; Risso, Fulvio; Baldi, Mario; Baldini, Andrea, "Enabling Flexible

Packet Filtering Through Dynamic Code Generation". In Proceedings of IEEE the

International Conference on Communications, 2008. ICC '08. , pp.5849-5856, 19-

23 May 2008

• Morandi, Olivier; Risso, Fulvio; Rolando, Pierluigi; Hagsand, Olof; Ekdahl, Peter,

"Mapping packet processing applications on a systolic array network processor". In

Proceedings of the International Conference on High Performance Switching and

Routing, 2008. HSPR 2008. , pp.213-220, 15-17 May 2008

• Morandi, Olivier; Risso, Fulvio; Valenti, Silvio; Veglia, Paolo; “Design and

implementation of a framework for creating portable and efficient packet-

processing applications”. In Proceedings of the 7th ACM international Conference

on Embedded Software (Atlanta, GA, USA, October 19 - 24, 2008). EMSOFT '08.

• Morandi, Olivier; Risso, Fulvio; Moscardi, Giorgio; “An Intrusion Detection Sensor

for the NetVM Virtual Processor”. In Proceedings of the The International

Conference on Information Networking 2009 (ICOIN 2009), Chiang Mai, Thailand,

January 2009.

Table of Contents

1. Introduction.. 1

PART I. Enabling Flexible Packet Processing 5

2. Towards Portable and Efficient Packet Processing Applications 7
2.1. Introduction.. 7
2.2. Related Work ... 10
2.3. Using a Virtual Machine for Code Portability... 13
2.4. JIT Compilation of Networking Data-Plane Applications 16
2.5. The Network Virtual Machine... 19

2.5.1. NetIL Execution Model ... 21
2.5.2. Memory Layout ... 22
2.5.3. Threading model .. 24
2.5.4. NetIL Instruction Set ... 24
2.5.5. Coprocessor Abstraction..26

2.6. Why NetVM Enables both Portability and Efficiency 28
2.6.1. Dataflow programming model... 28
2.6.2. Domain-Specific Intermediate Language .. 30
2.6.3. Structured Memory Model... 32
2.6.4. Virtual Coprocessors.. 34

2.7. Conclusion ... 36
3. Decoupling Programs from the Knowledge of Protocol Formats 38

3.1. Enabling Protocol-Agnostic Packet Processing Applications 38
3.2. Related Technologies: NetPDL and NetPFL... 44

3.2.1. NetPDL .. 44
3.2.2. Defining actions: NetPFL .. 47

3.3. Conclusion ... 48

PART II. Validation ... 49

4. Implementing the NetVM Model ..51
4.1. Introduction ..51
4.2. The NetVM Framework ...52
4.3. Compiler Infrastructure ..53
4.4. The Compilation Flow ...54

4.4.1. Mid-Level Optimizations ...57
4.5. Compiler Backends ..60

4.5.1. X86 Backend ..61
4.5.2. Octeon Back-end ..63
4.5.3. X11 Backend ..67

4.6. Conclusion..78
5. Assessing the programmability of the NetVM...79

5.1. Introduction ..79
5.2. Related Work..80
5.3. The Snort Intrusion Detection Sensor ..81
5.4. Architecture of the NetVM IDS Sensor ...83

5.4.1. Packet-processing workflow ..86
5.4.2. The code generation process ..88

5.5. Conclusion..89
6. Flexible Generation of Packet Filtering and Field Extraction Programs .91

6.1. Introduction ..91
6.2. Generating Packet Filtering Programs from NetPDL and NetPFL..........93

6.2.1. The Protocol Encapsulation Graph ..93
6.2.2. Packet Demultiplexing ...95
6.2.3. Locating header fields ..98

6.3. The Compilation Process ...99
6.3.1. Code Generation...100
6.3.2. Field Extraction ..101
6.3.3. Optimizations ...103

6.4. Conclusion..104
7. Experimental Results ...105

7.1. NetVM Snort Evaluation..105
7.2. NetPDL/NetPFL Compiler Evaluation ..106
7.3. Performance Evaluation of the NetVM Framework109

7.3.1. Testing the x86 back-end ...109
7.3.2. Testing the Octeon back-end..112
7.3.3. Testing the X11 back-end ..114

8. Conclusions ...116

1

1. Introduction

During last years we have assisted to an exponential growth of the Internet, both in

the number of connected users and in the variety of services made available by an

always increasing number of subjects. Indeed, the Internet is day-by-day more pervasive

in our lives and we are gradually transferring to this “virtual world” many tasks and

activities that until a few years ago were mostly peculiar to other domains.

On one side, we have seen the explosion of the World Wide Web and its shift from a

one-to-many to a many-to-many paradigm, leading to the rise of successful phenomena

like weblogs and social networks. This is coupled with another parading shift, in which

the web is seen as a distributed platform providing what are called “web-services”. On

the other side, we have seen the rise of several new possibilities for communicating,

sharing and exchanging informations, and it is nowadays common to use Voice over IP

(VoIP) services, P2P file-sharing, Internet radios and TVs, online applications (e.g.

Google Docs). The network is increasingly used as a transport layer that allows

distributing and exchanging complex and semantically-rich information.

In such scenario, Network Operators face several challenges, because they need to

provide users with appropriate Qality of Service (QoS) and deploy adequate security

1. Introduction

2

policies, while traffic loads on edge and core networks are increasing, and network

procols are evolving in order to support newborn services. This pushes for the need of

some degree of flexibility also in high-speed networking devices, like switches, routers

and firewalls. So the Networking Industry must cope with extremely diverging

requirements: on one hand, networking equipments must be able to keep up with line

rates that are rising in the order of tens of gigabit per second, while, on the other hand,

there is the need to shorten up the development cycle, in order to support novel

protocols and advanced functionalities within shorter delays. In particular, this second

point is being pushed to the limit of giving customers the ability to independently

implement new functionalities, for example adding support to custom and proprietary

protocols. As a direct consequence, the design of network devices can no longer rely on

completely hardware-based solutions - usually employing Application Specific

Integrated Circuits (ASICs) - for achieving high-throughput perfomances, because of

the need of providing some degree of flexibility and programmability.

The need of accomodating both flexibility and performance requirements is common

in many fields related to the design of embedded systems [1], and a widely adopted

solution is to integrate several, possibly heterogeneous, processor cores on a single chip,

along with specialized hardware coprocessors, in order to build what is called a System

on a Chip (SoC). In particular, during the last ten years, chip vendors have been

proposing several commercial Application Specific Instruction Processors (ASIPs)

targeted to high-throughput packet processing, which are commonly known as Network

Processors, or Network Processing Units (NPUs).

NPUs are specially designed and optimized for packet processing operations and, in

order to achieve high througput performances, they usually provide from tens to

hudreds of concurrent processing elements, which enable the exploitation of the

intrinsic parallelism found in packet processing applications.

2.1. Introduction

3

However, the expected advantages of using Network Processors for designing

today’s network devices, come at some costs in terms of ease of development of

software applications. In particular, difficulties are mainly tied to the high heterogeneity

of available architectures, making nearly impossible the development of portable

applications. In fact, a program written and optimized for a specific NPU cannot be

retargeted to work on a different hardware platform, because, unlike for general purpose

processors that expose a coherent programming model, network processors generally

expose a variety of heterogeneous low-level programming models, spanning variably

from shared-memory multi-processing models to pipelining and message passing ones.

Moreover, there is the lack of a standard high level programming language for these

processors, as often vendors provide a software development kit, which uses a C-like

language with extensions that are peculiar to the specific hardware platform. It is also

common to write applications directly in the native assembly language of a given

network processor.

The depicted scenario highlights the need for novel solutions capable of increasing

the reuse of software components and to shorten the development cycle in the design of

complex packet processing applications, while still ensuring the fulfillment of

perfomance constraints. The aim of this work is to respond to such defy, by taking into

account two main aspects of the problem: (i) the need of enhancing the portability of

software solutions, achieving a looser coupling between packet processing programs

and the specific hardware platforms where they will be executed, and (ii) the need of

being able to adequately follow the evolution of network protocols, by allowing

applications to seamlessly incorporate the support to emerging ones without the

additional costs related to stepping into a new development cycle (i.e. program

refactoring, quality assurance, release).

1. Introduction

4

The former point is addressed by investigating the opportunity of capturing the

intrinsic characteristics of packet processing applications into a novel programming

model, which is able to adequately abstract the functionalities usually provided by

network processor architectures, while allowing platform-specific mapping choices to

be isolated in a set of back-end modules. The latter point is addressed by investigating

the possibility of decoupling the logic of applications from the knowledge of network

protocols, providing the user with a set of languages and tools that allow writing

protocol-agnostic packet processing software with performances that are comparable to

those of hand-written programs.

This work is structured in two main parts. In the first one, two ortogonal solutions for

enabling flexibility in packet processing software are analyzed: in Chapter 2 the NetVM

programming model is presented as a possible solution for creating both portable and

efficient packet processing applications, while Chapter 3 will introduce the languages

and the outline of an architecture for obtaining efficient protocol-agnostic applications.

The second part aims at validating the proposed solutions. In particular, Chapter 4 will

present the implementation of the NetVM model as a runtime environment with a multi-

target compiler infrastructure; in Chapter 5 the capability of NetVM to support the

development of complex packet processing applications is assessed; Chapter 6 presents

the architecture of a compiler for the dynamic generation of packet filtering programs

based on an external protocol description database; experimental results are reported in

Chapter 7, while in Chapter 8 conclusions are drawn and future work is outlined.

5

PART I. Enabling Flexible Packet
Processing

7

2. Towards Portable and Efficient
Packet Processing Applications

2.1. Introduction

During the last decade, the increasing requirements in terms of flexibility for the

design of high-speed networking devices have pushed the Industry towards the

development of network processors, i.e. programmable processors providing several

concurrent execution units, with Instruction Set Architectures (ISAs) specifically

targeted to packet processing, usually integrated with special purpose hardware

coprocessors for offloading computational intensive functionalities. Even though such

devices are not able to achieve the same throughput performances of ASIC based chips,

they provide more flexibility thanks to their programmability.

However, network processors have traditionally exposed several problems from the

point of view of the ease of programming. Such problems mainly relate to the need for

the programmer to deal with very low-level aspects of the hardware, and to the

difficulty of manually partitioning application modules across several concurrent

2. Towards Portable and Efficient Packet Processing Applications

8

processing engines. The tools and Software Development Kits (SDKs) provided by

manufacturers are in most cases a partial solution, since they tend to expose the

hardware to the programmer through an assembler language, and even when a high

level language such as C is provided, it is generally extended with constructs that

directly maps onto hardware features, leading to a lack of abstraction.

Beside problems related to programmability, network processors suffer from a major

problem given by the impossibility to reuse software solutions across different hardware

platforms. Applications that have been developed and optimized for a specific NPU

architecture, when needing to be ported to a different architecture, must be redesigned

from scratch and have to follow again the entire development cycle. Indeed, network

processor architectures proposed from different vendors are extremely heterogeneous

between them. They span from symmetric multi-processing platforms like the Intel IXA

family (IXP12XX, IXP24XX, IXP28XX) [2] and the more recent Cavium Octeon [3]

network processors, to systolic array dataflow processors like the Xelerated X11 [4] and

the Bay Microsystems Chesapeake [5], which are capable of processing packets at

speeds in the order of tens of gigabits per second. A survey on the characteristics of

some of these NPU architectures can be found in Appendix 0.

Given such high heterogeneity, the problem of defining a common programming

model, capable of providing generality (i.e., capability to support a wide range of

applications), portability (across a wide range of network processor architectures),

efficiency, while still providing an adequate programming abstraction, is particularly

difficult. As will be detailed in Section 2.2, current solutions usually provide the latter

two features, but no solutions exist that looks at the problem in a comprehensive

manner. In particular, the generality of the approach and portability are usually not taken

into account, since the proposed solutions are mainly targeted to specific hardware

architectures, or are able to accommodate a very specific class of applications.

2.1. Introduction

9

Portability and efficiency are usually considered as conflicting requirements that can

be hardly achieved altogether in a specific solution. Indeed, while the introduction of an

abstraction layer capable of hiding the differences between different hardware platforms can

represent the basis for enabling the creation of portable software, the achievement of

adequate performances from the same application executed on a wide variety of

heterogeneous architectures is extremely challenging.

The main argument of this thesis is that, in the case of network processing software,

portability and runtime efficiency can be achieved both at the same time. In fact, packet-

processing applications are usually very limited in scope and expose very recognizable

structural and behavioural patterns. Such characteristics that are peculiar to the specific

application domain can be exposed to the programmer through an adequate

programming model, and inside the intermediate representation of a multi-target

optimizing compiler, allowing an efficient mapping on heterogeneous architectures and

enabling the deployment of aggressive special purpose optimizations.

In order to support this argument, part of this thesis work has been devoted to

refining and validating the concept of a Network Virtual Machine (NetVM) [6][7],

previously proposed by the NetGroup from Politecnico di Torino. NetVM provides a

mid-level abstraction layer, based on a dataflow programming model in which hardware

is virtualized, with the result of completely hiding the target architecture to the

programmer. In other words, NetVM aims at applying the well-known paradigm “Write

once, run everywhere” proposed by the Sun Java Virtual Machine (JVM) [8] and the

Microsoft Common Language Runtime (CLR) [9] to the field of network processing

software, where performance is a key factor.

One of the main objections to this approach is that the introduction a common

abstraction layer, while enabling portability, would result in a substantial overhead,

wasting the benefits of using special purpose and optimized hardware architectures. The

2. Towards Portable and Efficient Packet Processing Applications

10

first part of this thesis will demonstrate that this claim is not necessarily true in the case

of a virtual machine specifically designed for packet-processing applications, like the

NetVM. In particular, the NetVM model exposes a set of key features that, besides

making it a good target for different high-level languages, enable both portability and an

efficient mapping on the target hardware.

After a brief overview of the available related work, the current chapter will present

the NetVM abstraction layer, analyzing the points that make it a good choice for

developing portable and efficient network data-plane applications, while the following

chapters will focus on the implementation of the model as a portable runtime

environment and multi-target optimizing compiler. In chapter 0, experimental results

will show that NetVM applications can be efficiently executed, without any change, on

three different platforms such as the Intel x86 general purpose architecture, the Cavium

Octeon [3] multi-core network processor and the Xelerated X11 [4] systolic array

processor.

2.2. Related Work

In the last years, the problem of creating a suitable framework for programming network

processors has been widely investigated from both industry and academia.

Click [10] is a framework for implementing a modular software router, by

interconnecting different packet processing modules called elements. Elements implement

specific functions like packet classification, queuing, scheduling, and interfacing with

network devices. A router configuration is built connecting elements in a directed graph,

which represents the flow of the packets inside the router. A Click element is written in

C++, and is a subclass of the virtual class Element. NP-Click [11] proposes a programming

model based on the Click language for Intel IXP network processors, showing that the level

2.2. Related Work

11

of abstraction introduced, while easing application development, also enables an efficient

mapping on a special purpose architecture.

Memik et al. [12] demonstrate the advantages of structuring applications for network

processors in a modular way, and describe a system, called NEPAL, which is able to extract

the modules that constitute a sequential network-processing program for mapping them on

parallel execution units.

PPL (Packet Processing Language) [13], defined by IP Fabrics Inc., is a declarative

language for programming network processors of the Intel IXA family. A virtual machine

executes PPL programs on the target platform, and is in charge of mapping high level

constructs onto the available hardware features, enabling the transparent exploitation of

parallel processing engines. While the details of this solution are unknown, the fact of being

highly tied to a specific high-level language (i.e. PPL), and to a specific platform (Intel

network processors), represents a limitation.

Wagner et al. in [14] proposed a C compiler for an industrial network processor,

showing that exposing low-level details in the language through compiler known

functions allows an efficient exploitation of the available hardware features without

relying on assembly language.

PacLang, by Ennals et al. [15] is a framework that allows application designers to

use a simple high-level language to partition packet processing programs in different

concurrent tasks. The base elements of PacLang are tasks and queues. Tasks represent

computations that can be executed concurrently, while queues can be assimilated to

pipes, through which tasks can communicate and synchronize. The proposed system

allows a PacLang program to be automatically partitioned on parallel execution units;

however, its capabilities have been demonstrated only on Intel IXP network processors.

Shangri-la [16] is a system with a more general approach. Its basic components are a

domain-specific programming language (Baker) and a profile-guided compiler

2. Towards Portable and Efficient Packet Processing Applications

12

infrastructure, which is able to optimize and map an application onto Intel network

processors. While the reported performance results look promising, it is unclear if the

compiler framework can be retargeted in order to support different architectures.

Moreover, the solution appears to be tied to the Baker language.

These approaches generally fail to provide a comprehensive framework for achieving at

the same time both efficiency and portability across heterogeneous architectures. In

particular, those that are targeted to a specific platform, focusing on performance, tend to

expose in high-level programming languages a set of low-level primitives very close to the

hardware, causing a lack of abstraction. For example, programming models targeted to

multi-core based network processors may include explicit primitives for task/thread

synchronization, while other may provide special functions for accessing coprocessors or

that are directly mapped onto special-purpose instructions. These can be present either in

the form of library functions and APIs, or intrinsics (i.e. compiler known functions). In such

scenario, the model is hardly portable because it is too much tied to the target architecture

and porting it to another platform may be too much costly if not impossible, like for

example when needing to map thread synchronization on a systolic array processor.

Additionally, this approach, which originates from a bottom-up vision, tends to prevent

programmers from having an abstract vision of their application, because they are forced to

structure the software according to the execution model supported by the hardware, e.g. by

defining the appropriate task/thread partition and dealing with synchronization issues

explicitly, hence preventing any possible outcome in terms of portability.

Vice versa, the approaches that are more application-oriented usually tend to completely

hide the details of the underlying hardware, possibly enabling software portability.

However, they usually lack in generality since they are mostly tied to a specific class of

applications, leading to the impossibility to effectively use the model for writing different

kinds of applications, with the result of actually limiting the flexibility of the approach.

2.3. Using a Virtual Machine for Code Portability

13

In contrast to previous solutions, the one proposed in this thesis is based on a virtual

machine specially targeted to packet processing applications and aims at providing a

comprehensive programming model that is able to deliver high performances on target

architectures supporting it, while ensuring complete code portability and generality (i.e. the

capability to support several kinds of applications) through a mid-level abstraction layer.

This result is achieved by completely hiding the details of the hardware to the programmer

and by capturing in the programming model the characteristics that are peculiar to the

network-processing domain, allowing the compiler to have a more detailed view on the

semantic of the application, thus enabling an efficient mapping.

2.3. Using a Virtual Machine for Code Portability

The concept of a virtual or abstract machine is commonly used when facing the need

of hiding from the programmer the characteristics of the real execution units where

programs will be actually executed. This decoupling allows the same programs to be

executed on any system where an implementation of the abstract machine is available.

In particular, the implementation of a virtual machine usually comprises a component

called the Runtime Environment, which provides a mapping of the abstract components

onto the target architecture, and a component for translating into executable code the

instructions of the source program. The latter can be an interpreter, an ahead of time

(AOT) compiler, or a just-in-time (JIT) compiler. Figure 1 shows these three possible

scenarios.

In the case depicted in Figure 1A, the source program is executed through an

interpreter, i.e. a program that is able to decode a sequence of instructions and execute

them by emulating their behaviour. Because of its simplicity, usually the

implementation of scripting languages and the reference implementation of most virtual

2. Towards Portable and Efficient Packet Processing Applications

14

machines falls in this scenario. However, such this approach is not able to provide

adequate runtime performances, since the process of decoding source instructions and

emulating them is very time-consuming.

Figure 1. Three different implementation schemes for abstract machines

Figure 1B shows the scheme used when runtime performances play a major role. In

such case, the source program is translated ahead of time into a program that can be

directly executed on the target machine, possibly exploiting functionalities provided by

a runtime environment. The compilation process happens once, while the execution of

the target program is delayed and can be repeated several times, e.g. with different

inputs. This implies that the complexity of the code generation and optimization

techniques featured by the compiler can be tuned, based on the required runtime

performances. This scenario is common when implementing traditional high-level

programming languages like C/C++, etc. Even though it is quite uncommon to associate

a language like C to virtual machines, the reader should note that every computer

language at any level of abstraction also defines an underlying abstract machine that is

able to execute its primitives [17].

The scheme shown in Figure 1C is the one typically employed for the

implementation of modern programming language virtual machines such as the JVM

and the CLR. Here, the source program is translated into native code for the target

platform just before execution, through a just in time compiler. Indeed, in order to limit

2.3. Using a Virtual Machine for Code Portability

15

the delay due to the compilation time, usually the source program is not compiled all at

once, but only one module at a time, when needed, during execution. This schema sits

between the former two, allowing the direct execution of source code on the target

machine, with better runtime performances respect to the use of an interpreter.

However, especially for general-purpose applications where the user is directly

involved, a program compiled just in time will necessarily provide poorer performances

respect to an equivalent program compiled with a full-featured AOT compiler. In order

to guarantee an appropriate user experience, a JIT compiler must perform a compromise

between the required compilation time and the quality of the generated code, which are

two parameters tied by an inversely proportional relation: for obtaining better target

code (e.g. providing more processing speed), the compiler should perform more

complicated and aggressive optimizations, that in turn would increase the compilation

time.

For this last reason, it is common to associate the concept of a virtual machine with

poor runtime performances, because general purpose interactive programs, either being

interpreted, or compiled just in time, are generally slower than equivalent programs

compiled with a full optimizing ahead of time compiler.

If such consideration can be true for general-purpose virtual machines like the JVM

and the CLR, it does not necessarily apply to the case of a domain specific virtual

machine especially designed for the development and execution of packet processing

applications. In particular, we should note that networking data-plane applications

expose an execution pattern very different from that of typical general-purpose

applications, minimizing, in the former case, the differences between ahead of time and

just in time compilation. Moreover, as will be detailed in the rest of the chapter, the

definition of an appropriate model for the abstract machine can enable the deployment

2. Towards Portable and Efficient Packet Processing Applications

16

of special purpose optimizations, not applicable in compilers for general-purpose

languages.

In other words, the term “Virtual Machine” does not directly imply anything about

runtime performances, since these are mainly tied to the peculiar characteristics of the

abstraction it provides. In fact, the supposed slowness of Java programs on general-

purpose hardware is partially due to the features provided by the JVM abstract machine.

In particular, Java programs are always executed in a safe sandbox, guaranteeing that no

out of bound memory accesses will compromise the host machine. Moreover, Java uses

implicitly a garbage collector for deleting unused objects, freeing the programmer to

deal with manual memory allocation/deallocation. These and other features come at an

additional cost in terms of runtime performances, especially when using just in time

compilation, where the deployment of sophisticated optimizations is discouraged.

2.4. JIT Compilation of Networking Data-Plane
Applications

As already said, in general purpose virtual machines like the JVM and the CLR, the

use of just in time compilation responds to the need of enhancing the performances

perceived by the user of interactive applications, however Pletzbert and Cytron [18]

point out that in such context, the JIT compilation of Java applications does not always

guarantees better performances than those obtained through a bytecode interpreter:

“While the just-in-time approach avoids the penalty of interpretation, our experiments show that

the cost of compilation can significantly interrupt the flow of execution; furthermore, in many cases,

better performance could be obtained by interpreting the original form rather than compiling to

native code.”

2.4. JIT Compilation of Networking Data-Plane Applications

17

In particular, since JIT compilation of a program module is usually performed right

before its execution, the main constraint that must be satisfied for JIT compiled code to

be more efficient than interpreted code is the following:

TInt > TJit + TExec (1)

where TInt is the time taken for interpreting a program module, TJit the time taken by the

compilation process, and TExec the time spent during the execution of the resulting

machine code. Indeed, the translation to native code always introduces a delay in the

execution of a program module and, in order to maximize performances, both TJit and

TExec have to be minimized. On the other hand, such parameters are not unrelated, since

the quality of the machine code generated, and consequently its speed, highly depend

from the quality of the compiler and from the possibility to apply aggressive (i.e. more

costly) optimizations. A more complex JIT compiler can produce machine code that can

run faster than the code generated by a simpler one, but if the increased complexity can

reduce TExec, at the same time makes TJit bigger.

In other words, engineering a just in time compiler for a general purpose virtual

machine means searching a satisfactory compromise between compilation time and the

quality of the generated code. In the last years, several solutions for both the JVM and

the CLR have been proposed. Many of them try to reduce TJit sacrificing the opportunity

of applying aggressive optimizations [19][20][21][22]. The code generated by these

compilers is of average quality and is usually well suited for general-purpose

applications, where time constraints are not critical. Besides, in order to reduce the

latency of execution due to the compilation process, solutions like “continuous

compilation” have been proposed [18]: while a program is being compiled by the JIT,

the interpreter begins executing it, until the control of execution can be transferred to

the generated machine code.

2. Towards Portable and Efficient Packet Processing Applications

18

However, such considerations hardly could be applied in the domain of packet

processing applications, whose only purpose is to process (possibly infinite) sequences

of network packets, and which are by nature not interactive at all. In particular, for a

packet-processing module, the constraint imposed by (1) takes the following form:

ExecJitInt nTTnT +> (2)

where n is the whole number of packets processed during the life of the application.

The same equation can be rewritten as:

)(ExecIntJit TTnT −<

 (3)

The result is that if the JIT compiled code performs better than the interpreted one

and for n large enough, the constraint is always satisfied. This means that, due to the

non-interactive nature of packet processing applications, as for any other kind of data-

intensive software, the pure cost of just-in-time compilation, for large it would be, is a

factor that does not directly influence the perceived performances, and the only

constraint is that the native code generated by the compiler should be faster than the

interpreted one.

However, the main outcome of such considerations goes over the simple comparison

between the performances of JIT compiled versus interpreted code. Indeed, it is clear

that the major term to be considered for the design of a Just in Time compiler for a

packet processing virtual machine is the quality (i.e. usually measured by the speed) of

the generated code. In other words, it is not necessary to trade compilation time for

runtime performances, leading to a situation very close to the one of ahead of time

compilation, which, being performed completely offline allows the deployment of

extremely aggressive optimizations.

2.5. The Network Virtual Machine

19

2.5. The Network Virtual Machine

The NetVM abstraction layer [6][7] defines a dataflow programming model for data-

plane networking software, where an application is expressed as the interconnection of a

set of independent packet processing modules called Network Processing Elements

(NetPEs). Indeed, a NetVM application can be viewed as a directed acyclic graph,

whose nodes represent NetPEs, and whose edges represent connections between

consecutive modules. NetPEs are interconnected between them through Ports. Network

packets are like tokens that flow through the graph from a source to a sink, while being

processed by NetPEs. In particular, packet sources and sinks are called respectively

input and output Sockets, which can be connected to both physical network interfaces

and “application interfaces” that allow packets to be injected by, or sent to user-defined

control-plane modules.

The use of a dataflow model for expressing networking applications is not novel and

is quite common [10][12][16]. This stems from the consideration that such kind of

applications can be described as a collection of relatively independent tasks to be

performed on packets; once a module has finished processing a packet, this can advance

toward the next one, and the first is ready to accept a new packet, following a pipelining

schema.

Actually, the entity flowing through NetPEs is not a simple network packet, but a

more complex structure called Exchange Buffer, which, besides the packet buffer,

contains additional information, like a timestamp and a special memory buffer called

the Info Memory, which consecutive NetPEs can use for exchanging data associated to

the packet.

Figure 2 shows an example of a generic NetVM application, viewed as a collection

of interconnected NetPEs.

2. Towards Portable and Efficient Packet Processing Applications

20

In
p
u
t
S
o
c
k
e
t

O
u
tp
u
t
S
o
c
k
e
t

In
 p
o
rt

O
u
t
p
o
rt
s

In
 p
o
rt

O
u
t
p
o
rt

In
 p
o
rt

O
u
t
p
o
rt

In
 p
o
rt

O
u
t
p
o
rt

In
 p
o
rt
s

O
u
t
p
o
rt

Figure 2. NetVM application viewed as a dataflow graph of NetPE modules

Each NetPE exposes a user-defined number of ports, through which exchange

buffers can be either received or sent. The ports of each NetPE can be connected to

ports of other NetPEs or to Sockets. Both input and output ports are classified in two

categories: push and pull. Based on the class of the two ports involved in a connection,

the way in which exchange buffers are transferred between consecutive NetPEs varies.

In particular, in a push connection the packet is “pushed”, i.e. sent from an upstream to

a downstream NetPE, while in a pull connection the packet is “pulled”, i.e. requested by

a downstream NetPE to an upstream one.

Due to its dataflow nature, NetVM follows an event-driven paradigm, so the

behaviour of a NetPE module is defined by specifying a set of event handlers that are

executed when specific events happen. In particular, the NetVM model defines three

main events that each NetPE should handle, that are (i) NetPE initialization, (ii) the

arrival of an exchange buffer on an input push port, and (iii) the arrival a request to send

an exchange buffer on an output pull port. The corresponding event handlers are named

respectively Init, Push and Pull. In particular, the Init handler of each NetPE is triggered

once, before starting packet processing, and allows the private state of the NetPE to be

2.5. The Network Virtual Machine

21

initialized, while the Push and Pull event handlers express the actual tasks to be

performed in order to process packets.

NetPE event handlers can be programmed in a mid-level language called Network

Intermediate Language (NetIL), which is a stack-based assembler providing an

instruction set specifically targeted to packet-processing applications.

The choice of making NetIL a stack-based language, in contrast to traditional

register-based schemas, is simply dictated by the fact that the implicit presence of an

operand stack avoids the necessity to assign explicit names to the temporary results of

operations, leading to a more compact binary representation. Indeed, the actual

expressivity of a stack-based language is equivalent to that of a register-based one.

On the other side, the choice of defining a mid-level assembly language stems from

the need of making NetVM general enough to be independent from any specific high-

level language. In fact, NetIL can be an excellent target for several high-level

languages, ranging from declarative (e.g. rule based), to imperative ones (e.g. like C).

More details on the characteristics of NetIL will be given in section 2.5.4

2.5.1. NetIL Execution Model

As for any computer language, NetIL defines its own execution model, where the

abstract architecture of the NetPE, shown in Figure 3, plays a major role.

A NetPE is a 32-bit stack-based processor that is able to perform integer operations

on data stored in a set of local memories. Floating-point operations are not supported,

because they are generally not used in packet processing applications. A local

processing unit executes the instructions stored into the code memory, which contains

the three NetPE event handlers (i.e. Init, Push, Pull). The starting addresses of the

handler programs inside the code memory are available in three read-only registers,

named respectively INA (init handler address), PSA (push handler address), and PLA

2. Towards Portable and Efficient Packet Processing Applications

22

(pull handler address), so, once a particular event occurs, the correct program is

executed.

Figure 3. NetPE Internal Architecture

Instructions operate on values loaded onto the operand stack, and results are pushed

onto the stack as well. A set of local variables allows storing temporary data that is

guaranteed to survive only until the end of the current handler being executed.

Every NetPE can access one or more “virtual coprocessors”, for executing complex

operations, such as lookup and regular expression matching, which are likely to be

implemented in hardware on network processing platforms. More details on NetVM

coprocessors will be given in Section 2.5.5.

2.5.2. Memory Layout

NetVM provides a rich memory model, whose structure stems from the following

considerations on typical packet processing applications:

The packet is the fundamental entity that is central to the whole application and

needs to be explicitly identified

Although different NetPEs represent relatively independent tasks to be performed on

packets, it is frequent that a module needs to communicate to subsequent ones partial

results, in the form of single values or structured data

2.5. The Network Virtual Machine

23

Persistent or static state (e.g. forwarding tables, lookup tables, counters, etc.), is

usually localized into a single module, and, provided a communication system based on

the previous points, there is no need of shared state among different modules

The result is a set of orthogonal memory segments that reflect the needs of the

programmer for storing temporary or persistent state, and for communicating values

between different modules of a packet-processing application. In particular two memory

segments flow through modules carried inside exchange-buffers, i.e. the packet buffer

and the info memory, while a memory that is local to each module, i.e. the data

memory, allows storing static data that should survive across consecutive executions of

NetPE event-handlers.

The size of the info and data memory segments can be defined through specific

directives in the source NetIL assembly, while the size of the packet buffer is initialized

to the actual length of the incoming network frame, when an exchange buffer is created

and injected into the application. The virtual machine ensures that no memory access is

performed out of each segment boundaries.

NetVM does not provide any explicit mechanism for memory allocation and

deallocation. All memory segments are statically allocated, either in the initialization

phase, or at the creation of an exchange buffer. This choice is mainly dictated by

performance constraints, since memory allocation and deallocation at runtime may be

costly on some architectures, and by the consideration of the fact that in real-world

packet processing applications, persistent and complex data structures (e.g. a forwarding

table) are usually created by the control plane (e.g. through a routing protocol process or

manual configuration) and consumed in a read-only fashion by the data-plane program.

On the other hand, if a NetVM application would need a memory allocation mechanism

for managing complex memory structures that must be updated at runtime, such as for

example a session table, the programmer should consider to abstract the complex

2. Towards Portable and Efficient Packet Processing Applications

24

functionality (e.g. a lookup engine) through a virtual coprocessor (see Section 2.5.5),

enabling an efficient mapping on a wider variety of target platforms.

2.5.3. Threading model

Even if NetPEs can be viewed as a set of concurrent packet processing tasks, NetVM

is based on a purely sequential threading model. In particular, the execution of a NetPE

packet handler is tied to the presence of an exchange buffer, and only one exchange

buffer is allowed to be processed by a NetPE at a specific time; on the other hand, an

exchange buffer cannot be associated to more than a NetPE at a time. This stems from

the dataflow nature of the NetVM model, for which each exchange buffer traverses a

pipeline of NetPEs during its journey through the application, triggering the execution

of a sequence of packet handlers. In other words, for a given exchange buffer, a specific

instruction path of the application is executed sequentially.

Complementarily, each NetPE during its operation “sees” a sequence of exchange

buffers, and ideally, at a given time, every NetPE should be processing a different

exchange buffer.

2.5.4. NetIL Instruction Set

The NetVM instruction set derives from the one of a generic stack machine with

additional instructions to support packet processing. Instruction opcodes can be

subdivided into several groups; the most important ones are listed in Table 1.

In NetIL the only supported data type is 32 bit unsigned integer, although signed

variants of arithmetic operators are available, ensuring a correct handling of overflow

and underflow conditions. Memory accesses can be performed on 8, 16, and 32 bit

locations, and each value loaded from memory is either zero or sign extended to 32 bit,

depending on the type (signed or unsigned) of the memory read instruction. On the

other hand, since the operand stack is 32 bit wide, 8 and 16 bit memory stores are

2.5. The Network Virtual Machine

25

performed by truncating a 32 bit value on a byte or word boundary, keeping the least

significant bits.

The highly structured layout of NetVM memories is reflected in NetIL, where, for

every kind of memory (packet, info, data), there is a specific group of access operators.

Since numeric data in network packets is stored in network byte order (i.e. big endian),

packet memory read and writes of 16 and 32 bit values perform an implicit network-to-

host byte order conversion; on the other hand, data is stored in the info and data

memories in host byte order, i.e. the natural byte order of the target machine. While byte

ordering does not affect the internal functioning of the virtual machine (since

conversion is automatically performed when loading and storing data), this is important

when looking at the interaction of the NetVM with the outside world. In other words, an

external program using the NetVM must provide it a packet buffer formatted in

network-byte order, while a simple read from the internal memory of the NetPE (if

needed) will expect to find data in the host byte order.

The NetIL instruction set provides operators that are frequently used in packet

processing applications and that are likely to be implemented in hardware in network

processing architectures, like for example bit manipulation instructions. Besides, a wide

variety of flow control operators is available; since the main purpose of packet

processing programs is to take decisions based on the content of network packets, the

usual jump and branch instructions are provided, as well as the more complex field

comparison operators and a multi-way branch (i.e. the switch/case construct). The latter

is particularly effective for implementing protocol demultiplexing (i.e. deciding which

is the next protocol header based on the value of a specific field).

2. Towards Portable and Efficient Packet Processing Applications

26

Table 1. NetIL instruction set summary

Category Examples Description
Arithmetic and Logic add, sub, mul, neg Basic arithmetics
 shl, shr, rol, ror Shift and rotate
 and, or, xor, not Bitwise logic
Bit Manipulation set.bit, clear.bit, flip.bit, test.bit Bit test, set, flip and clear
 clz Count leading zeros
 find.bit Find the first bit set
Flow Control jump, jcmp.eq, jcmp.neq, jcmp.l, … Jump and branches
 switch Switch/Case construct
 call, ret Procedure call and return
Locals locload, locstore Local variable load and store
Memory Access pload.8, pload.16, pload.32 Packet memory load
 pstore.8, pstore.16, pstore.32 Packet memory store
 iload.8, iload.16, iload.32 Info memory load
 istore.8, istore.16, istore.32 Info memory store
 mload.8, mload.16, mload.32 Data memory load
 mstore.8, mstore.16, mstore.32 Data memory store
Field comparison jfield.eq, jfield.ne, jfield.lt, … Packet buffer comparisons
Packet transfer pkt.send, pkt.receive Packet send and receive
Stack management push Push constant
 pop Discard top of the stack
 dup Duplicate top of the stack
Coprocessor Interaction copro.in, copro.out Coprocessor reg read/write
 copro.invoke Invoke coprocessor operation
 copro.init Coprocessor initialization

2.5.5. Coprocessor Abstraction

Since packet-processing applications usually rely on a set of functionalities that are

often implemented directly in hardware on many network processor architectures (e.g.,

Content Addressable Memories for fast table lookups, hashing, string matching, etc.),

the NetVM model includes the concept of virtual coprocessors, i.e. a way to make such

features available to the programmer through a well-defined interface. A coprocessor is

viewed by the application as a black box providing specific operations; while its

coherent interface guarantees the portability of the software on different platforms, its

implementation may vary from platform to platform. In particular, on architectures that

do not provide any hardware acceleration, coprocessors should be emulated by

software, while on architectures providing special purpose features, coprocessors may

be mapped directly on hardware.

2.5. The Network Virtual Machine

27

From a logical point of view, a NetVM coprocessor is composed of a set of directly

addressable 32 bit registers and a local processing unit, as shown in Figure 4. NetVM

Coprocessor Architecture. Registers can be accessed through the NetIL instructions

copro.in and copro.out , while the instruction copro.invoke is used for

triggering the execution of a specific operation from the processing unit.

Figure 4. NetVM Coprocessor Architecture

In particular, the operations to be performed for executing a coprocessor function are

the following:

Write the appropriate values into the coprocessor input registers through the

copro.out instruction

Invoke a coprocessor operation through the copro.invoke instruction

Read the result from one or more coprocessor output registers through the

copro.in instruction

Since some complex functionalities, such as the ones for regular expression

matching, need to access the entire packet buffer (e.g. for scanning the payload in

search of a string), the NetPE can release the exchange-buffer and pass it to a specific

coprocessor through the copro.exbuf instruction.

2. Towards Portable and Efficient Packet Processing Applications

28

Coprocessors may also support an initialization phase that is invoked through the

copro.init instruction.

2.6. Why NetVM Enables both Portability and
Efficiency

The abstraction layer introduced by the NetVM exposes a set of key features that,

while enabling the portability, also allow an efficient mapping of packet processing

applications on extremely heterogeneous architectures. This is possible because the

NetVM programming model favours the sharing of relevant information on the

semantic of the application between the programmer and the compiler dedicated to

mapping it on the target architecture. In particular, if the use of constructs borrowed

from the application domain partially constrain the freedom of the programmer respect

to the use of more general programming languages, like C, on the other hand, it allows

the compiler to have a more detailed view on the intentions of the programmer,

allowing it to perform a more efficient mapping, and to deploy more aggressive

optimizations that a compiler for a general purpose language could not.

This Section analyzes how such concepts are captured in NetVM, and it will point

out how the features of its programming model enable either the portability of user

applications, either an efficient mapping on a wide range of heterogeneous hardware

architectures.

2.6.1. Dataflow programming model

As described in Section 2.5, NetVM is based on a dataflow model of network data-

plane applications, which can be usually described as a collection of relatively

independent tasks to be performed on packets. This allows to make explicit the coarse-

grained parallelism between functional modules, enhancing the possibility of efficiently

2.6. Why NetVM Enables both Portability and Efficiency

29

mapping the application on multi-core processors [16]. Besides, since the programmer

has to deal with simple event handlers that are sequentially triggered by network

packets flowing through application modules, it is quite easy understanding the logic of

the software that can be viewed as the composition of self-contained functional blocks.

With respect to these points, other major programming models like the purely

sequential and the parallel ones are both subject to different kinds of problems. The

former one, even when modular and while being more natural for the programmer,

exposes no relevant information to the compiler for extracting the coarse-grained

parallelism between modules, so complex and possibly inefficient analyses need to be

put in place in the compiler when needing to parallelize the code on multiple cores [23].

On the other side, classical parallel programming (e.g. multithreading), based on

concurrent modules sharing state between them, poses different problems to both the

programmer and the compiler, because (i) the task of protecting shared state against

hazards is left to the developer through synchronization primitives like locks,

semaphores and mutexes, leading to software that is hard to understand and maintain,

and (ii) the applications based on concurrent tasks or threads, while can be easily

mapped on multi-core environments providing hardware support for synchronization

and locking primitives, may lead to an inefficient mapping on single core processors,

and cannot be targeted to massively pipelined architectures, like systolic array network

processors. Moreover, while the compiler can easily perform intra-module

optimizations, the application of inter-module and application-wide global

optimizations in concurrent programs can be extremely challenging.

The event-based nature of the dataflow paradigm, which mixes both communication

and synchronization, allows to prune away many sources of non-determinism that are

intrinsic in multi-threading, as noted in [24], with major advantages for both the

programmer and the compiler. With respect to the latter, when the dataflow graph of

2. Towards Portable and Efficient Packet Processing Applications

30

modules is acyclic (and in our case it is), it is extremely simple to translate it in a single

control flow graph, obtaining a completely sequential program, by inlining consecutive

modules.

From the point of view of portability and efficiency, this enhances the chances of

mapping NetVM applications on extremely heterogeneous platforms, such as single

core, multi core, or even systolic array network processors, without performance

penalties, because the compiler has a complete view on the application, and can perform

aggressive inter-module optimizations and, on multi-core architectures, apply any

suitable strategy for automatic parallelization of sequential code, as those presented in

[23].

2.6.2. Domain-Specific Intermediate Language

NetIL, the language employed for programming NetVM applications, has been

designed to be general enough for being the ideal target for multiple high-level

languages and, at the same time, for providing an adequate level of abstraction in order

to allow the portability of packet processing software and an efficient mapping across

several heterogeneous network processing platforms. In fact, NetIL has been profitably

employed for the development of two high-level frontends, mainly for packet filtering

and classification languages, which have been presented in [25][26].

In contrast, other frameworks for the development of efficient packet processing

applications [13][14][15][16], tie their solution to a high-level programming language

(e.g. domain specific, or derived from the C language), with the result of limiting the

generality and the flexibility of the proposed approach.

As pointed out in Section 2.2, besides the mentioned problems from the point of

view of generality, some of the solutions proposed by both the industry and the

academia suffer also from the point of view of portability, because of the choice of

incorporating in the high level language the features that are specific to the target

2.6. Why NetVM Enables both Portability and Efficiency

31

architecture, or to its low level programming model. For example, the IXA SDK,

provided by Intel for programming the network processors of the IXP family, relies on a

modified version of the C language, where key assembly instructions of the target ISA

(Instruction Set Architecture) are exposed to both the programmer and the compiler as

intrinsic functions (i.e. functions whose semantic is known by the compiler), with the

result of tightly coupling the software to the specific architecture and preventing its

portability. Another approach that may pose some problems for portability over

heterogeneous architectures is the one proposed with PacLang [15], where the high

level language exposes constructs representing tasks, queues and explicit

synchronization primitives that are tied to the multi-threaded programming model of the

target platform (i.e. the Intel IXP2400).

NetIL, instead of abstracting the hardware functionalities of a specific architecture,

provides constructs that abstract the functionalities that are commonly needed by packet

processing applications, making them available to the programmer. A backend compiler

can then map them efficiently on the hardware features that the target platform may

provide, with the result of enabling flexibility, portability and efficiency, all at the same

time. At some extent, this can be viewed as a generalization of the approach proposed

by [14], which presents a compiler for a modified version of the C language, where the

packet manipulation functionalities commonly used by networking applications (e.g.

packet access, bit manipulation, etc.) are exposed as intrinsics, which can be efficiently

mapped on the target platform through the generation of the appropriate assembly

instruction sequences, instead of relying on potentially inefficient library function calls.

The key point that the two solutions share in common is the aim of rendering explicit in

the source language the most common packet manipulation functionalities, as well as

other features borrowed from the specific application domain, thus providing an

adequate abstraction layer to the programmer and allowing the compiler to perform

2. Towards Portable and Efficient Packet Processing Applications

32

more aggressive optimizations based on the knowledge of the semantic of such

operations. Moreover, since NetIL also aims at being general enough to support

different kinds of applications it is not tied to any specific high-level language and it

adequately mixes low and mid level constructs, in order to be an effective target for

several (possibly novel) high-level languages.

As a simple example, NetIL provides the switch-case construct, which is common in

many high-level languages. In particular, the presence of such construct is very

important, because it is widely used in packet processing programs for demultiplexing

protocol headers, and making it explicit in the language allows a backend compiler to

chose how implement it in the most efficient way on the target platform, for example by

exploiting a TCAM-based lookup coprocessor, as Section 4.5.3.3 will show.

Another example is given by the field-comparison and bit-manipulation instructions

of NetIL, which correspond to functionalities commonly used in packet processing

programs. Even though it is likely that some NPU architectures provide similar

instructions, the NetIL abstraction completely hides low level details from the

programmer, who simply use those them as packet processing primitives, delegating to

the compiler the task of finding an efficient mapping on the target platform, either

based on hardware primitives, where these are available, either emulated in software

where these are absent.

2.6.3. Structured Memory Model

As described in Section 2.5.2, NetVM provides a set of orthogonal memory segments

that reflect the needs of the programmer for storing temporary or persistent state, and

for communicating values between different modules of a packet-processing

application. This enables a specific memory location to acquire a semantic meaning for

both the programmer and the compiler.

2.6. Why NetVM Enables both Portability and Efficiency

33

In particular, the presence of an explicitly identifiable memory representing the

packet buffer is extremely important, either because several Network Processors (e.g.

the Xelerated X11 and the Cavium Octeon) give it a special treatment, either because, as

will be pointed out in Section 4.5.1, even on general purpose architectures like the Intel

x86, this enhances the opportunity of deploying very effective special purpose

optimization techniques.

On the other hand, the flat memory model employed in other programming models

like the one of the traditional C language, besides preventing the deployment of special

purpose optimizations specifically based on the actual meaning of a memory buffer (e.g.

the buffer containing packet data), it cannot be mapped on some NPU architectures, like

those of the Intel IXA family, or the Xelerated X11, which are based on an explicit

hierarchy of memories. The solution commonly employed in such cases is to extend the

language, introducing special storage classes for informing the compiler about which

memory of the target architecture should be used for containing a user buffer. For

example, the Intel IXP2xxx network processors provide separate interfaces for

accessing SRAM and SDRAM memories, which are characterized by different

latencies, costs and sizes. Besides, each processing element of the NPU (called

“Microengine”) owns a small and fast private memory called “scratchpad”. The

programmer is in charge of deciding in which of these memories should reside each

specific portion of the state (e.g. usually packet data is stored in SDRAM, while single

static values like counters are stored in the scratchpad memory), so the Intel IXA SDK

provides a programming language derived by C (Microengine C) [27], which has been

extended with a set of architecture-specific storage classes for allowing to specify at

which kind of memory a pointer should refer. Figure 5 shows an example of such

scenario, where the packet buffer is mapped on SDRAM. The storage class of a pointer

is specified through the __declspec keyword.

2. Towards Portable and Efficient Packet Processing Applications

34

It appears obvious that such kind of solutions, which make visible the characteristics

of the target platform to the programmer, pose a strong limit to portability. On the other

side, NetVM memories reflect the purpose for which the programmer use them, i.e. (i)

accessing the packet buffer (packet memory), (ii) communicating values between

consecutive modules (info partition), and (iii) storing persistent and static data (data

memory). No information is given to the programmer about which kind of memory will

be actually used for mapping them on the target architecture, since such task is

completely left to the compiler, which can always chose the more efficient solution with

the result of enabling portability while still ensuring efficiency.

void process(__declspec(sdram) uint8* packet, uint16 len)
{

if (*(uint16*)&packet[12] == 0x800)
processIP(&packet[14]);

return;
}

void process(__declspec(sdram) uint8* packet, uint16 len)
{

if (*(uint16*)&packet[12] == 0x800)
processIP(&packet[14]);

return;
}

Microengine C
architecture-specific storage class

Microengine
#1

Microengine
#1

SDRAM SRAM

Intel IXP 2xxx

Figure 5. Use of architecture-specific storage-classes for mapping Intel IXP2xxx memories in C

2.6.4. Virtual Coprocessors

Another aspect that is very critical for efficiently mapping packet processing

applications on network processor architectures is the exploitation of advanced

2.6. Why NetVM Enables both Portability and Efficiency

35

functionalities that may be implemented in hardware as coprocessors (e.g. hashing,

lookup, string-matching, etc.).

The available solutions can mainly be ascribed to one of the followings: (i)

encapsulating advanced features in function libraries, (ii) exposing them as intrinsics or

compiler known functions, (iii) using inline assembly. Unfortunately, each one of these

methods suffers from the point of view of portability. First, libraries are based on the

concept of function call, which is not always available in all network processor

architectures, e.g. those of the Intel IXP family, or on systolic array network processors

like the Xelerated X11 [4]. Moreover, libraries are software components that are

compiled and optimized separately, thus preventing aggressive application-wide

optimizations. Intrinsics may represent a solution, because the compiler know their

semantic and can map them efficiently on the available hardware features, however,

when they abstract low level functionalities, the result is source code highly tied to the

target architecture. Finally, inline assembly provides a high potential from the point of

view of efficiency, but it highly prevents portability, as well as maintainability and

dependability.

The solution proposed by NetVM virtual coprocessors can be viewed as an extension

of the concept of “compiler known functions”. In fact, virtual coprocessors are more

like “compiler known objects”, i.e. modules with their own state and with “methods”

that provide complex functionalities whose operation is specified by the NetVM model,

and which a backend compiler can map in the most efficient way on the target

architecture. In particular they can be implemented by leveraging the presence of

special purpose hardware, if present, or emulated in software otherwise.

Even though it would be possible for a NetVM virtual coprocessor to abstract a real

hardware coprocessor, this would lead to similar problems from the point of view of

portability, as those pointed out before. Indeed, virtual coprocessors, instead of

2. Towards Portable and Efficient Packet Processing Applications

36

abstracting specific hardware functionalities, they abstract “macro-functionalities” that

are commonly employed in packet-processing applications, e.g. exact-match lookup,

string matching and regular expression matching, enabling the portability of

applications across heterogeneous architectures. In particular, for example the NetVM

lookup coprocessor could be implemented using a T-CAM on some architectures (e.g.

the Xelerated X11), or as a hash table, possibly leveraging a hashing coprocessor like

the one provided by the Intel IXP2xxx network processors, or finally it could be

implemented completely in software (e.g. through a binary search tree) on general

purpose platforms where no specific hardware acceleration is present, as depicted in

Figure 6.

Insert(key, val)
Lookup(key)
Delete(key)
Update(key, val)

Lookup Coprocessor

Primitives:

Lookup
Table

NetVM

T-CAM Hash-tableBinary-Tree

Hardware-based
Implementation

Software-based
Implementations

Target Architecture

Figure 6. Possible mappings for a lookup coprocessor

2.7. Conclusion

This chapter highlights the need for a suitable abstraction for programming high-

speed packet processing applications, capable of allowing them to be both efficient and

portable across a wide range of special purpose architectures. The NetVM virtual

machine is introduced as a possible solution, showing that portability and efficiency

2.7. Conclusion

37

might not be considered as conflicting requirements. In particular, the NetVM

programming model, by capturing the peculiar characteristics of the network processing

application domain, provides the programmer with an abstraction layer capable of

completely hiding the details of the actual execution platform, thus enabling portability.

On the other hand, it also allows a compiler implementing it to have a more detailed

view on the semantic of the application, thus enabling the deployment of special

purpose optimization and mapping techniques, which favour runtime efficiency.

The goodness of such approach will be demonstrated in the second part of this thesis,

where the implementation of the NetVM model in a multi-target optimizing compiler is

described, and performance evaluation results are presented.

3. Decoupling Programs from the Knowledge of Protocol Formats

38

3. Decoupling Programs from the
Knowledge of Protocol Formats

3.1. Enabling Protocol-Agnostic Packet Processing
Applications

Packet processing applications such as routers, firewalls and IDSs, rely on protocol

demultiplexing functionalities for determining the presence of particular protocol

headers in packets, and for extracting the actual values of specific fields to be used for

performing more complicated operations. For example, the forwarding process in a

router needs to analyze the value of the destination address contained in IP packets for

determining the next hop, while a firewall or an ACL module needs to know the values

of a given set of fields for performing packet classification.

The traditional approach of hardcoding the format of protocol headers in the software

of the abovementioned type of applications, although being efficient in terms of runtime

performances, suffers from non-negligible limitations with respect to flexibility and

maintainability. In particular, developers must have a deep knowledge of protocol

3.1. Enabling Protocol-Agnostic Packet Processing Applications

39

header format, and adding support for new protocols implies modifying the application,

debugging and testing it again. Besides, different applications that rely on similar

protocol decoding functionalities are usually based on custom code, which results in a

multiplication of the amount of software to be written and maintained, with a

corresponding increase in the incidence of bugs and security flaws.

An effective way to overcome such problems would be to isolate the knowledge

about the format of network protocols in a separate module, by using an application

independent language for describing the binary layout of protocols, and by creating a

common database of protocol descriptions, usable by several heterogeneous

applications. This is the case of the Network Protocol Description Language (NetPDL)

[28], formerly proposed by the NetGroup at Politecnico di Torino, which aims at

describing the format of network protocol headers and encapsulation rules between

different protocols. An API provides the appropriate functionalities for interacting with

the protocol description database, allowing user programs to be completely unaware of

the exact location of header fields in network packets, and delegating to an external

module the task of demultiplexing the headers present in a packet buffer and extracting

the actual values of specific fields, as shown in Figure 7.

3. Decoupling Programs from the Knowledge of Protocol Formats

40

[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Protocol
Database
(NetPDL)

Demultiplex protocol headers
searching for IP

Extract actual offset and size of
ip.src and ip.dst in the

current packet

IPv4 format

Version: 4 bits
HeaderLength: 4 bits
TOS: 8 bits
Total Length: 16 bits
Identification: 16 bits
...
Src: 32 bits
Dst: 32 bits

User Application (e.g. Firewall) Packet Processing API

Figure 7. Decoupling applications from the knowledge of protocol formats

However, if the depicted scenario introduces a high flexibility, given by the

possibility of seamlessly adding support to novel protocols without any modification to

applications, its applicability in the implementation of high-speed data plane network

devices highly depends on its capability to compete with the runtime performances

provided by the hardcoded approach.

Indeed, NetPDL has been profitably used for implementing a packet-decoder [28],

i.e. an engine for parsing the content of network packets and extracting the actual values

of each field, according to the information provided by an external protocol description

database. Such module is now part of the NetBee library [29] and it is used for

visualizing packet-data in the Analyzer [30] network monitor. However, the packet-

decoder is based on a step-by-step interpretation of the NetPDL database, and even

though its performances can be reasonable for an offline application such as a network

sniffer, they are not compatible with the requirements of high speed data-plane

applications, such as routers or firewalls, which have to cope with ever increasing line

rates.

A solution capable of guaranteeing performances that are comparable to those of

completely hand-written programs, consists in translating protocol descriptions into

3.1. Enabling Protocol-Agnostic Packet Processing Applications

41

native code through a compiler. As shown in Figure 8., the NetPDL language could be

translated almost one by one into a C or C++ module with the same capabilities of the

one based on NetPDL interpretation. However, the use of static compilation would

highly mitigate the advantages of having an external and possibly dynamically

updatable database of protocol descriptions, because the packet processing module

generated from descriptions would suffer from similar problems of its hardcoded

counterpart. Indeed, adding support for a new protocol would require extending the

external protocol database, regenerating the module and linking it against the user

application. Moreover, such scheme would prevent to optimize and tune the generated

code based on the needs of the user. For instance, in the depicted scenario, even if the

user application only requests the extraction of the ip.src and ip.dst fields, the packet

decoding module statically generated from NetPDL would contain code for extracting

the values of all the fields of the IP protocol, with a resulting lack of efficiency.

[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Demultiplex protocol headers
searching for IP

Extract actual offset and size of
ip.src and ip.dst in the

current packet

User Application (e.g. Firewall) Packet Processing API

Packet processing module
(e.g. C/C++ function)

Packet Processed
Data

Protocol
Database
(NetPDL)

NetPDL
Compiler

Figure 8. Generation of a packet processing module from protocol descriptions

The second major argument of this thesis is that in order to support an efficient

decoupling of the logic of packet processing applications from the knowledge of the

format of network protocols, dynamic compilation techniques must be put in place, for

generating code to be executed on a configurable packet processor, thus enabling the

3. Decoupling Programs from the Knowledge of Protocol Formats

42

dynamic update of the protocol database and the deployment of any suitable

optimization.

The solution proposed here relies on an additional language for defining packet

filtering and field extraction rules (NetPFL), and on a compiler for translating such rules

into a packet processing program for the NetVM, according to the information on

protocol format and encapsulation contained in a NetPDL database.

The overall architecture is outlined in Figure 9. NetPFL provides an interface based

on simple packet processing primitives that allow shaping NetPDL packet decoding

functionalities based on the actual user needs (e.g. specifying the information to be

extracted from network packets). Besides, since the operation of the NetVM-based

packet processor can be dinamically configured by simply changing the program to be

executed, the proposed solution enables a high degree of flexibility, given by the

possibility to adding support to new protocols by updating protocol descriptions at

runtime. The just-in-time compilation capabilities of NetVM guarantee the runtime

efficiency of the approach.

3.1. Enabling Protocol-Agnostic Packet Processing Applications

43

[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Demultiplex protocol headers
searching for IP

Extract actual offset and size of
ip.src and ip.dst in the current

packet

User Application (e.g. Firewall) Packet Processing API

NetVMNetPDL/NetPFL
Compiler

NetVM
Program

NetPFL filtering language:
“ip extractfields(ip.sr, ip.dst)

NetPDL

Packet Processed
Data

Figure 9. Complete view of the proposed packet processing architecture

As a proof of concept, an optimizing compiler for the translation of NetPDL-based

packet filtering rules into a program for the Network Virtual Machine has been designed

and implemented, demonstrating that NetPDL can be effectively used for driving the

dynamic generation of efficient packet processing programs.

The rest of this Chapter will give an overview on the main building blocks, namely

NetPDL and NetPFL (NetVM has been presented in Chapter 2), while the compiler

architecture, and the deployed code generation techniques will be discussed in the

second part of this thesis.

3. Decoupling Programs from the Knowledge of Protocol Formats

44

3.2. Related Technologies: NetPDL and NetPFL

3.2.1. NetPDL

The NetPDL language enables the description of how protocol headers are laid out

and chained together inside network packets. Since it is based on XML, specific tags,

characterized by several attributes and organized in hierarchical structures, identify the

elements of the language.

Describing a protocol in NetPDL means enclosing in a section identified by the

<protocol> tag the list and the binary format of the fields that build up a header, as

well as the encapsulation relationships that can be present between different protocols.

Figure 10 shows a sample NetPDL specification for the Ethernet protocol header. In the

<format> section we find the description of the binary layout of the header as a list of

<field> elements. The <encapsulation> section, on its side, identifies the

conditions that need to be met for other protocols to be encapsulated into the one being

described. For instance, the <nextproto> element, acts as a pointer to the next

protocol header.

NetPDL allows the description of complex headers through the definition of several

kinds of header fields (e.g., fixed, token delimited and variable size fields, bitfields,

padding and more) and by using structured control flow constructs, such as if-then-else,

switch-case, and loop. Conditional elements can appear also in the

<encapsulation> section for describing complex encapsulation rules.

While such features are sufficient for the description of L2-L4 protocols, in order to

support the description and the recognition of L7 protocols, NetPDL provides advanced

features that will be briefly outlined here. More details on the NetPDL language can be

found in [31].

3.2. Related Technologies: NetPDL and NetPFL

45

<protocol name="Ethernet" longname="Ethernet 802.3“ >

<format>

<fields>

<field type="fixed" name="dst" longname="MAC Dest." size="6"/>

<field type="fixed" name="src" longname="MAC Source " size="6"/>

<field type="fixed" name="type" longname="Ethertype " size="2"/>

</fields>

</format>

<encapsulation>

<switch expr="buf2int(type)">

<case value="0x0800"> <nextproto name="#IP"/> </cas e>

<case value="0x0806"> <nextproto name="#ARP"/> </ca se>

</switch>

</encapsulation>

</protocol>
Figure 10. NetPDL description of the Ethernet protocol header

3.2.1.1. Protocol verification

TCP/IP has an ambiguous mechanism for application-layer de-multiplexing. For

instance, while a value 0x800 in the ethertype field uniquely identifies an IP packet, the

value “80” in the TCP port does not necessary mean that the packet contains an HTTP

payload. For instance, several peer to peer application use this port using custom

protocols other than HTTP. In order to allow some form of validity check on the

protocol to guarantee that the packet really is what it appears to be, NetPDL provides

the <verify> construct, which includes both an expression and a set of associated

actions. The verification can either return “found ” or “not found ”, or it can

postpone the result with a “deferred ” or “candidate ” return code. The

“deferred ” is used for protocols that require several packets to be analyzed in order

to return an exact answer (e.g. RTP, Skype). Vice versa, the “candidate ” is used for

protocols in which the payload can match several protocols at the same time. For

instance, KAZAA communicates through HTTP messages that contain a special

optional header; hence KAZAA packets are also valid HTTP ones. However, NetPDL is

able to differentiate among these protocols and pick the correct one (in this case, the

check against the HTTP signature returns “candidate ”, and this protocol will be the

3. Decoupling Programs from the Knowledge of Protocol Formats

46

correct one unless a check against another protocol returns “found ”, in which case the

second protocol is chosen).

3.2.1.2. Session Tracking

Session Tracking is mostly used to keep track of TCP sessions. This mechanism

leverages a simple table containing the 5-tuple that includes the ID of known sessions

and the associated application-layer protocol.

In order to implement session tracking, NetPDL defines a special bi-dimensional

variable, the <lookuptable> element, which supports an arbitrary number of fields.

Fields are either keys to locate entries (“primary key” in database terminology) or data

(such as protocol ID) related to the given element.

Although bi-dimensional variables can have any use, they are particularly useful for

transport-layer session tracking. These entries (e.g. TCP sessions) have the necessity of

being properly managed, e.g., we must be able to purge “zombie” TCP sessions that are

no longer active. For this reason, NetPDL can associate an attribute to each entry,

defining its validity. An entry can last forever (unless deleted by an explicit command in

the NetPDL file), or it can be automatically cleared off after a given inactivity time.

3.2.1.3. Support to application-negotiated sessions

For the case of applications that dynamically negotiate the parameters of the session,

e.g., the case of FTP data connection whose ports are dynamically negotiated in the FTP

control channel, or SIP sessions that dynamically negotiate RTP ports, NetPDL supports

a set of processing elements through the <execute-code> section. For instance, the

definition of the FTP protocol will contain a piece of code that recognizes the

negotiation of a new FTP data session, and inserts a new entry into the TCP session

table. Usually these entries do not have to go through a verification process – i.e., if the

3.2. Related Technologies: NetPDL and NetPFL

47

“master” session is trusted (it has already been verified before), its “child” sessions

should be trusted as well.

3.2.2. Defining actions: NetPFL

Even though NetPDL provides features that go beyond those of a completely

declarative language, its only purpose is the description of the format of network

protocol headers and it provides no direct means for defining actions to be executed

when specific conditions are satisfied. Here is where the Network Packet Filtering

Language (NetPFL) [32] comes into play.

NetPFL is based on a filter-action model to express packet filtering conditions and

packet handling statements, such as accepting a packet, or extracting the actual values

of a set of fields. The filtering expression can be based on (i) protocols (i.e. a filter is

satisfied if the packet contains the specified protocol header), and (ii) field values (i.e. a

filter can be specified as an expression involving the value of one or more header

fields). In NetPFL, basic predicates can be composed with the Boolean operators AND,

OR, and NOT in order to express complex filters. Since the filtering expression is an

optional part of a NetPFL statement, when a filter is not specified, the action should be

applied to all incoming packets.

Figure 11 shows two sample NetPFL rules: the first represents a complex filtering

expression based on the presence of a tcp header and on a condition on the ip.src

field, while the second is a field extraction statement for returning the values of the

ip.src , ip.dst , udp.sport and udp.dport fields contained in each udp packet.

ip.src == 10.0.0.1 and tcp returnpacket as stream 1
udp extractfields(ip.src, ip.dst, udp.sport, udp.dport) as stream 2

Figure 11. NetPFL expression examples.

NetPFL is built on top of NetPDL and its main tokens (i.e. protocol names and

header fields) are not specified explicitly in the language, but are defined in a NetPDL

3. Decoupling Programs from the Knowledge of Protocol Formats

48

database. In other words, the expressions in Figure 11 make sense only if the NetPDL

description contains the definition of the specified protocols and fields, i.e. a protocol

named “ip ” whose header contains the fields named “src ” and “dst ”, a protocol

named “tcp ”, and a protocol named “udp ” with two fields named respectively

“sport ” and “dport ”.

For a detailed specification of the NetPFL language, please refer to [32].

3.3. Conclusion

This Chapter outlines the architecture of a possible solution for efficiently

decoupling the logic of packet processing applications from the knowledge of the

format of network protocols, and presents its main building blocks.

Using the NetPFL language, a user application can specify the kind of information to

be extracted from network packets, while the actual format of supported protocols

resides in an external NetPDL database of protocol descriptions. NetPFL rules are used

for driving the translation of NetPDL descriptions into code to be executed on the

NetVM virtual machine, which can be compiled just-in-time in order to guarantee

runtime performances.

This approach enables both flexibility and efficiency, overcoming the limitations

either of an approach based on interpretation, either of an approach based on the static

compilation of NetPDL descriptions.

The validation of such solution is presented in the second part of this thesis, also

reporting performance evaluation results.

49

PART II. Validation

51

4. Implementing the NetVM Model

4.1. Introduction

In order to demonstrate the goodness of the NetVM programming model and its

capability to enable the creation of portable and efficient packet processing software,

the NetVM architecture has been implemented as a portable runtime environment and a

multi-target optimizing compiler infrastructure. The compiler is able to operate either as

a Just in Time or as an Ahead of Time compiler, generating native or assembly code,

depending on the target platform. Optimizations work on two different levels: the higher

level is architecture-independent and operates on the code removing redundancies and

useless computations, whereas the lower one is target-specific and performs the actual

mappings between the NetVM model and the target machine, possibly exploiting

special purpose hardware units available on modern NPUs.

Experimental results reported in Chapter 7, demonstrate the effectiveness of the

approach, showing that thanks to the characteristics exposed by the NetVM model, the

generated code has performances often better than those obtained from hand-written

programs compiled with state-of-the-art general-purpose compilers.

4. Implementing the NetVM Model

52

4.2. The NetVM Framework

The NetVM model requires a runtime environment acting as a communication layer

with the external world. Its main function is to provide I/O facilities, to handle the

coprocessors implementation (hardware or software) and to manage the application’s

resources, e.g. memory allocation. In fact a NetVM application needs to receive packets

from input interfaces and to forward them to output interfaces after the processing. Such

operations are heavily dependent on the hardware characteristics. In other words, the

runtime environment must implement an abstraction layer making all such details

transparent to the application and to the programmer.

On the other hand, since a NetVM application relies on different elements (NetPEs,

coprocessors, etc), whose configuration can be chosen by the programmer, the runtime

environment has to (1) allow the programmer to create and configure each component,

and (2) implement these elements on different architectures either by exploiting

hardware modules or by supplying software implementation of unavailable components.

APIAPI

Architecture-Independent
Functions

Architecture-Independent
Functions

InterpreterInterpreter
Optimizing Compiler

(JIT/AOT)
Optimizing Compiler

(JIT/AOT)

Architecture-Dependent
Functions

Architecture-Dependent
Functions Compiler BackendsCompiler Backends

NetVM Components Implementation

Target Architectures
(e.g. X86, Octeon, X11)

Target Architectures
(e.g. X86, Octeon, X11)

APIAPI

Architecture-Independent
Functions

Architecture-Independent
Functions

InterpreterInterpreter
Optimizing Compiler

(JIT/AOT)
Optimizing Compiler

(JIT/AOT)

Architecture-Dependent
Functions

Architecture-Dependent
Functions Compiler BackendsCompiler Backends

NetVM Components Implementation

Target Architectures
(e.g. X86, Octeon, X11)

Target Architectures
(e.g. X86, Octeon, X11)

(A)

(B)

(C)

Figure 12. NetVM Framework Architecture

The NetVM model is implemented as a framework, (whose logical layout is shown

in Figure 12), which comprises a portable runtime environment and a multi-target

4.3. Compiler Infrastructure

53

optimizing compiler. At the top of the framework (A) sits a programming interface that

allows the programmer to instantiate and manage the main NetVM components in the

user applications. The middle layer (B) represents the core of the framework,

implementing the architecture-independent parts of the runtime environment and a

NetIL interpreter, as well as the target-independent components of the compiler. Finally,

at the bottom of the structure (C) we find target specific modules, i.e. the compiler back-

ends and the architecture-specific parts of the runtime environment, which implement

the actual mapping of the NetVM functionalities (i.e. instruction set and virtual

coprocessors), on the target architecture.

4.3. Compiler Infrastructure

As Figure 13 shows, the compiler follows a classical 3-stage model. First, the compiler

front-end builds a medium-level intermediate representation (MIR) of the source

program, while checking its formal correctness; then the MIR is fed into the optimizer,

whose objective is to reduce code redundancies and improve efficiency. A platform-

dependent back-end lowers the optimized MIR to a low level intermediate

representation (LIR), which is very close to the assembly language of the target

architecture and performs additional optimizations. Finally, the resulting machine code

is emitted.

A program represented in MIR form is described as a list of expression trees, whose

root nodes represent statements (i.e. assignment and control flow operators), while leaf

nodes represent the operands of an expression (e.g. constant values or registers). The

LIR form, instead, represents the program as a sequence of three-address instructions

closer to the target machine language. The reason for implementing a multi-level

intermediate representation is based on the need to delay the lowering phase and to

provide as much information as possible on the source program to the optimizer. This

4. Implementing the NetVM Model

54

makes it possible to perform more aggressive optimizations, based on the knowledge of

the semantic of the constructs employed by the programmer, as will be pointed out in

Section 4.5.

Back-End

Tree-based Mid-Level IR
(SSA)

High level
Front-end
High level
Front-end

High level
Front-end
High level
Front-end

Front-Ends

BUR Instruction Selection
+

Target-Specific
Transformations

BUR Instruction Selection
+

Target-Specific
Transformations

NetVM Back-End
Target

Independent
Phases

Target
Specific
Phases

Target Assembly Language

NetIL bytecode

NetIL bytecode front-endNetIL bytecode front-end

High level
Front-end
High level
Front-end

Mid-level optimizationsMid-level optimizations

Figure 13. Compiler Architecture

The whole compilation framework is designed in a modular fashion, in order to ease

the task of adding new back-ends. In particular, the analysis and optimization

algorithms are able to work on different intermediate representations, and each back-end

can configure the optimizer in order to apply only the transformations that are suitable

for the target platform.

The compiler can generate either machine code in memory, following the Just-In-

Time paradigm, or assembly files as an Ahead-Of-Time compiler. In the latter case, the

programs generated by the compiler are assembled by using third party tools (e.g. GCC

or the development tools provided for the specific target platform).

4.4. The Compilation Flow

Although a source program can be translated directly into the target language, compilers

are generally organized as a series of phases, each of which apply a distinct transformation

4.4. The Compilation Flow

55

to the source program. This scheme creates the need for an intermediate representation for

the code that is continuously transformed during the compilation process. Since the details

of the target language should be confined to the compiler backend as far as possible, the use

of a target-independent intermediate provides the following benefits:

• Retargeting is facilitated: a compiler for a different target architecture can be created

by only creating a new back-end

• All target-independent optimizations can be applied to the intermediate

representation before passing it to the backend

The NetVM compiler uses two different representations for the program being

compiled: a Medium Intermediate Representation MIR and a Low Level Intermediate

Representation LLIR. The former is a machine-independent representation created by

the compiler front-end and it is transformed into the latter, machine-dependent, by the

instruction selection phase of every backend.

In MIR form, the code is described as a list of statements1; each statement represents

a tree whose nodes represent expressions. The operators employed in this phase are

NetIL ones, allowing the compiler to exploit the knowledge of the semantics of domain-

specific constructs exposed by the language, as pointed out in Section 2.6. The operand

stack is mapped on expression trees, while operations on local variables are converted

into operations on an infinite set of registers, called “virtual registers”. Figure 14 shows an

example of a NetIL program being converted into a list of MIR statements.

1Statements are roughly equivalent to sentences in natural languages. A statement forms

a complete unit of execution: a=b+c is a statement, while b+c is an expression.

4. Implementing the NetVM Model

56

The LLIR intermediate representation is a list of assembly instructions whose

operators are very close to the target machine language. Each backend maps MIR

statements on lists of LLIR instructions and then applies on it target-specific

transformations and optimizations.

push 12 ;offset of the ethertype field
upload.16 ;load the ethertype field
push 2048 ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field
push 167772161 ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1 ;filter true

DISCARD:
ret ;filter false

push 12 ;offset of the ethertype field
upload.16 ;load the ethertype field
push 2048 ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field
push 167772161 ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1 ;filter true

DISCARD:
ret ;filter false

jcmp.neq DISCARD

push 12upload.16

push 2048

jcmp.neq DISCARD

push 30upload.32

push
167772161

ACCEPT:

pkt.send out1

DISCARD:

ret

Statements
List

Expression
Trees

Figure 14. Conversion of a NetIL program into a MIR list of statements

Figure 15 shows an overview of the compilation flow regarding mid-level

transformations, which will be the argument of the rest of this section.

4.4. The Compilation Flow

57

Undo
SSA

Undo
SSA

NetIL Bytecode

Target-Specific BackendTarget-Specific Backend

Copy
Coalescing

Copy
Coalescing

Code
Inlining
Code

Inlining

Bytecode
Analysis
Bytecode
Analysis

MIR
Generation

MIR
Generation

Do
SSA
Do

SSA

Mid-Level
Optimizations
Mid-Level

Optimizations

Stack
Based

IR

Tree
Based
SSA

(MIR)

Target
Specific

IR
(LLIR)

Figure 15. Compilation Phases

4.4.1. Mid-Level Optimizations

In order to provide a general framework for simplifying the development of dataflow

analysis and optimization algorithms, the NetVM compiler translates the MIR into a

Static Single Assignment form (SSA) [33]. The SSA form implies that every variable is

assigned exactly once, in this way the relationships between the definition and the uses

of every variable are made explicit in the MIR, without altering the semantics of the

program. The optimizing algorithms benefit from this form in terms of simplicity of

implementation.

The optimization algorithms implemented in the NetVM framework have been

selected after an accurate analysis of existing NetIL code, either hand-written, or

automatically generated through a set of high-level frontends. In particular, the code

generated by the packet filter compiler presented in [25], exposes several redundancies

and suboptimal recurrent patterns. The implemented algorithms aim also at taking into

account such situations, by removing the negative effects introduced by automatic code

generation.

Among the implemented optimization algorithms, Constant Propagation replaces

every use of constant-initialized registers with the respective values. Such optimization

4. Implementing the NetVM Model

58

removes assignment instructions where a constant is copied into a register whose value

is never changed and often enables the application of other optimizations, such as

Constant Folding or Dead Code Elimination. The former of these tries to simplify all the

operations whose operands are constant, by replacing them with the result computed at

compile-time. The latter removes instructions defining variables that are no longer used

later in the code (i.e. dead variables). Algebraic Simplification has some similarities

with constant folding, but, instead of computing at compile time the result of constant

expressions, it exploits algebraic properties of mathematical and logic instructions to

replace sub-expressions that can be computed at compile time with their result, for

example by substituting the expression (a * 1) with (a). Reassociation is a technique

that joins different statement trees into deeper ones, enabling further transformations to

be applied by other algorithms like Constant Folding [34].

The role of reassociation is evident when considering the structure of typical packet

demultiplexing programs. These programs usually contain sequences of operations for

finding the offsets of both protocol headers and fields in the packet buffer. Figure 16A

shows an example of such a sequence of statements for incrementing a variable holding

the current offset (i.e. r0), in order to point to the beginning of the TCP header. The

increment is made in two steps, by adding the lengths of the Ethernet and IP headers (14

and 20 bytes respectively). The reassociation algorithm joins the two statements

resulting in the statement on the left of Figure 16B, allowing further optimizations.

Indeed, constant folding can remove the second ADD node, resulting in the tree on the

right. Since this kind of pattern is very frequent, reassociation is very effective in terms

of performance gain.

4.4. The Compilation Flow

59

store r0

add

load r0 const 14

store r0

add

load r0 const 20

store r0

add

load r0 const 14

store r0

add

load r0 const 20

store r0

add

const 20add

load r0 const 14

store r0

add

const 20add

load r0 const 14

store r0

add

load r0 const 34

store r0

add

load r0 const 34

A

B
Figure 16. The role of reassociation

All optimizations described above are performed on the IR in SSA form, but in order

to produce executable code, this has to be reverted back to a normal form: this step

leaves the program in a state where most variables are defined only once and a large

number of copies exist in the program. This is clearly non-optimal because such

quantity of copies is cumbersome to execute and a large number of virtual register can

burden subsequent compiler modules, affecting compilation times. For these reasons we

implemented a Copy Coalescing [35] algorithm, which scans the code for copies and

tries to assign the same name to both the source and the destination variables involved

in the copy. This is safe if the variables involved have live ranges that do not overlap.

Beside optimizations based on dataflow analyses, the optimizer also provides

algorithms for simplifying the structure of the control flow graph, such as Branch

Simplification, for replacing all conditional jumps that can be evaluated at compile-time

with unconditional jumps, Jump-to-Jump Elimination for bypassing and removing basic

blocks containing only a jump instruction, and Unreachable Code Elimination for

removing unreachable basic blocks [34].

4. Implementing the NetVM Model

60

Although the architecture-independent optimization algorithms implemented look

simple and are widely known from classical compiler theory, they have proven to be

extremely effective for two main reasons: (i) packet-processing applications use a very

simple structure of the code, compared to general purpose ones, and (ii) these provide

the base for further target-specific transformations that can be applied by a specific

back-end, as will be detailed in 4.5. The combination of both architecture-independent

and target-specific optimizations results in the production of code that in some cases is

faster than the one generated by state-of-the-art C compilers, as Chapter 0 will show.

4.5. Compiler Backends

The NetVM compiler infrastructure provides three backends: one for the Intel x86

architecture, one for the Cavium Octeon network processor and one for the Xelerated

X11 systolic array processor. In particular, the former two have a very similar structure,

while the latter, being targeted to a very special purpose architecture, relies on a more

complicated sequence of compilation phases.

Every backend of the NetVM compiler translates MIR statements into sequences of

LLIR instructions implementing them. This task is handled through a Bottom-Up

Rewriting System (BURS) [36], which executes a tree-matching algorithm driven by

architecture-specific rules that specify how a portion of the intermediate representation

(i.e. an expression sub-tree) should be translated into target instructions. In particular,

different rules can relate to overlapping tree patterns, and the BURS is able to chose the

best (i.e. the less expensive) combination that covers the most extended expression tree.

BURS can be configured to recognize very specific patterns that can be part of an

algorithm, enabling a very flexible approach in the creation of the target code. For

instance, an algorithm made up of three pieces ABC can be implemented as AB in

4.5. Compiler Backends

61

software and C in hardware on one platform, and as A in software and BC in hardware

on another platform.

4.5.1. X86 Backend

The x86 backend follows the Just-In-Time paradigm: for each NetPE composing a

NetVM application it generates the binary code for a function receiving an Exchange

Buffer as an argument. The sequence of the compilation phases involved is shown in

Figure 17.

BURS-based
Instruction Selection

BURSBURS--basedbased
Instruction SelectionInstruction Selection

Switch loweringSwitch loweringSwitch lowering

Graph-coloring
Register Allocation

GraphGraph--coloringcoloring
Register AllocationRegister Allocation

Binary
Code emission

BinaryBinary
Code emissionCode emission

Tree
Based

IR

X86
IR

(Infinite
Regs)

X86
Binary
Code

LinkingLinkingLinking

X86
IR

(Machine
Regs)

Medium level IR
(MIR)

Figure 17. Compilation phases for the x86 backend

The x86 backend, after having mapped MIR statements onto x86 LLIR instructions

in the BURS instruction selection phase, performs register allocation in order to assign a

machine register or a memory location to every virtual register used in the MIR

program. The register allocation algorithm implemented performs is based on graph

coloring [37][38], using the spill heuristic proposed in [39] for minimizing spill costs

and for guaranteeing an optimal utilization of machine registers.

4. Implementing the NetVM Model

62

4.5.1.1. Intel X86 low-level optimizations

The set of BURS rules implemented in the back-end aims at addressing two

problems: (i) the optimal exploitation of the complex instruction set of the target

machine, and (ii) the application of specific optimizations for packet-processing

applications.

With respect to the first kind of optimization, the CISC-based Intel x86 includes

powerful and complex instructions, which allow specific NetIL patterns to be translated

into a single x86 instruction, with the result of minimizing the code size. The BURS

instruction selection algorithm makes this operation straightforward. For example, Figure

18 presents a fragment of x86 code that calculates the length of the IP options fields with

both its naïve and its optimized version. Since this value is calculated by loading the IP

header field, masking it, multiplying it by four and finally subtracting 20, we can

compact most of the processing through the x86 LEA (Load Effective Address)

instruction [40], which exploits the Memory Management Unit of the processor.

movzx eax, byte ptr [ebx+14]
and eax, 0xf
mov esi, 4
mul esi
mov esi, eax
add esi, -20

movzx eax, byte ptr [ebx+14]
and eax, 0xf
lea ecx, dword ptr[ecx+eax*4–20]

Non optimized Optimized

Figure 18. Exploiting the Intel x86 instruction set

On the other hand, we implemented special rules for optimizing frequent operations

of packet-processing applications. For example, these often need to load a field from the

packet header, perform some calculation and compare it with a constant value. However

packets contain data organized in network byte order, which is big-endian, while x86

uses the little-endian convention. This requires swapping the data contained in the

packet buffer before starting the processing. Our solution, instead, uses the BURS to

recognize those patterns of instructions and move the byte swapping operation to

4.5. Compiler Backends

63

compile time. In other words, whenever possible, instead of generating code for

swapping the bytes of a register at runtime, the compiler swaps the constant during the

compilation, thus producing more efficient code. A simple example of the use of this

technique is presented in Figure 19, which refers to the control that determines if an

Ethernet header is followed by an IP header.

mov eax, word ptr [12]
shr eax, 0x10
bswap eax
cmp eax, 0x800

cmp word ptr [12], 0x8

Non optimized Optimized

Figure 19. Constant byte order swapping optimization

Another common operation in packet-processing applications is represented by the

multi-way branch, modelled after the switch-case construct of the C language. The

back-end includes a switch lowering module that follows an approach similar to the one

implemented in the LLVM compiler [41], which is able to select the best mapping

algorithm, according to the cardinality and the density of the case set.

Finally, the x86 back-end includes a specific phase that implements an efficient

linking strategy for code associated to different NetPEs: direct linking avoids returning

the control to the framework when a NetPE task ends, hence reducing the overhead

introduced by the runtime environment.

4.5.2. Octeon Back-end

Before describing the backend for the Cavium Octeon network processor, a short

description of the characteristics of the target architecture is presented, and more details

on it are reported in Appendix A.2.

4. Implementing the NetVM Model

64

4.5.2.1. The Octeon architecture

Figure 20. Internal Architecture of the Cavium Octeon Network Processor2

Like most NPs, the Cavium Octeon tries to exploit the parallelism of typical packet-

processing applications: for this reason it features up to 16 MIPS-64 cores at 600 MHz.

Each core has a private L1 cache, while the L2 cache and DRAM are shared. Although

the L2 cache and DRAM are physically shared, the cores cannot communicate through

the memory because of their private virtual memory space. Communication primitives

between cores are provided by specific hardware mechanisms. The primary on-chip

communication mechanism is the work, which is an entity created upon the arrival of a

packet and queued into a specific hardware unit: the Packet Order Work (POW). Works

have many attributes that determine how the POW schedules them to the cores. For

example the programmer can specify different QoS levels associated with different

2 Copyright © 2000 - 2008 Cavium Networks. All rights reserved

(http://www.caviumnetworks.com/OCTEON-Plus_CN58XX.html)

4.5. Compiler Backends

65

kinds of traffic, since the unit receiving incoming packets can parse the packet header,

providing a preliminary classification. The most important attribute is the group: in fact

cores subscribe to groups and the POW schedules works to the cores according to the

subscribed groups. When a core terminates its job, it can submit the work to another

group, i.e. to another core, or send the packet out to a network interface.

Besides the MIPS cores, the chip also contains supporting units and coprocessors for

offloading some specific tasks. In particular, some of these deal with the reception and

the transmission of packets, others are devoted to the management of pools of memory

buffers, while coprocessors implement cryptographic and string matching

functionalities in hardware.

4.5.2.2. The compiler back-end for the Cavium Octeon

When generating code for the Cavium Octeon, the NetVM compiler uses an Ahead-

Of-Time model and the output of the compilation process is represented by several

assembly files, C listings and configuration files that must be further processed by the

Octeon SDK, using the well known GCC compiler toolchain. The result is a native

application running on the NP hardware with a minimal runtime environment, as the

processor units are exploited to implement natively the NetVM model. In fact, as figure

Figure 21 shows, the code generation process is not different from the x86 back-end

(i.e. it implements the BURS instruction selection and global register allocation), while

the mapping of native hardware functionalities deserves some more discussion and

represents the most valuable part of this work. Particularly, this includes the mapping of

the Exchange Buffer (i.e., the memory that contains the packet) on native hardware

structures, and the mapping of the string matching coprocessor of the NetVM model.

4. Implementing the NetVM Model

66

BURS-based
Instruction Selection

BURSBURS--basedbased
Instruction SelectionInstruction Selection

Switch loweringSwitch loweringSwitch lowering

Graph-coloring
Register Allocation

GraphGraph--coloringcoloring
Register AllocationRegister Allocation

Assembly
Code emission

AssemblyAssembly
Code emissionCode emission

Tree
Based

IR

MIPS
IR

(Infinite
Regs)

MIPS
Assembly

Code
Further Compilation and

Linking (Octeon SDK)
Further Compilation and Further Compilation and

Linking (Octeon SDK)Linking (Octeon SDK)

MIPS
IR

(Machine
Regs)

Medium level IR
(MIR)

Figure 21. Compilation phases for the Cavium Octeon backend

With respect to the former, the Exchange Buffer can be mapped on the work

structure of the POW unit. This enables NetPEs to be distributed on different cores that

communicate through the native mechanism, in a way that is completely transparent to

the programmer. Currently, our prototype exploits only one core, hence it implements

dynamic NetPE linking as in the x86 back-end and exploits the POW unit only for

receiving and transmitting packets from the external world. However the general

mechanism is already in place and can be used as a starting point for future work aiming

at fully exploiting the potentialities of multi-core processing.

With respect to the second item, the NetVM model has a general string matching

coprocessor that enables searching for groups of patterns in the packet payload.

Patterns, which must be initialized before starting the program, are divided into groups

identified with an integer ID, so that the coprocessor can search all the patterns

belonging to a group at once and return multiple matching results to the caller. While

the x86 back-end provides a software implementation based on the Aho-Corasik

algorithm [42], the Octeon includes a hardware unit that is able to traverse graph-based

4.5. Compiler Backends

67

structures representing Deterministic Finite Automata (DFA) in memory, which can be

used to perform both string and regular expression matching. With respect to the Octeon

processor, the DFA graph must be translated into a binary image, which has to be

loaded in a special external memory, the Low Latency Memory (LLM). During

execution, the cores can submit a command to the DFA engine specifying the address of

the packet payload and the address of the graph in the Low Latency memory to be used.

The hardware unit automatically loads data from the packet memory and uses it to

traverse the graph in the LLM, while searching for a match.

Finally, the runtime environment for this back-end is very simple and it consists of

an initialization routine (automatically emitted by the compiler) that initializes the

processor units and instantiates the memory structure needed by the NetVM instance.

The only task of the runtime environment is then to receive packets from interfaces and

to pass them to the NetVM.

4.5.3. X11 Backend

4.5.3.1. The X11 Network Processor

The Xelerator X11 network processor is based on a systolic array (actually a

pipeline) with a synchronous dataflow architecture, which shares the concept of a

systolic pipeline with its predecessor X10q [43]. Figure 22 shows an overview on its

internal architecture.

The processing elements are either VLIW processors called Packet Instruction Set

Computers (PISCs) or I/O processors called Engine Access Points (EAPs). As shown in

Figure 22a PISCs are arranged in blocks while EAPs are placed at fixed points between

PISC blocks. EAPs essentially dispatch the computation to special purpose devices that

can be used to offload part of the computation off the PISC pipeline. Such devices

include TCAMs, counters, hardware for computing hash values, external SRAM, etc.

4. Implementing the NetVM Model

68

When a packet enters the pipeline, it is first partitioned into fixed size fragments.

Thereafter, the pipeline processes the packet fragments using iterations of (1) PISC

processing interrupted by (2) actions and look-ups orchestrated by EAPs. As a fragment

traverses the pipeline, it carries an individual execution context containing the fragment

itself, a register file, status registers, and other information that constitute the complete

state of a program. Figure 22b shows the details of a PISC block. It is important to

understand that one PISC acts on one packet fragment during exactly one cycle. During

this cycle, the PISC can perform a set of parallel instructions on the fragment, before

passing it on to the next element in the pipeline.

P
IS

C
 0

Packet Buffer

Execution Context

PISC BLOCK

Packet Buffer

Execution Context

Packet Buffer

Execution Context

P
IS

C
 1

P
IS

C
 2

3

DATA FLOW

Look Aside
Engine

NSE
Engine

Look Aside
Engine

Look Aside
Engine

Meter
Engine

Hash
Engine

Counter
Engine

TCAM
Engine

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

RX
MAC

RX
MAC

RX
MAC

Optional TCAM Optional RLDRAM, FCRAM, SRAM or LA 1 co-processor

Programmable Pipeline

TX
MAC

TX
MAC

TX
MAC

a) X11 Architecture b) PISC Block Detail
Figure 22. X11 Internal Architecture Overview

The parallelism of the pipeline is hardwired in the architecture itself. From one

perspective, this makes the software handling of concurrency easy, since the execution

contexts and PISCs are effectively isolated from each other. No explicit mechanisms

such as threads or mutexes need to be adopted to protect accesses to these local

resources. It is also easy to access external resources as long as this is made in a

constrained fashion, primarily limited by the look-up bandwidth towards external

engines.

However, generic update of shared state is difficult to realize due to pipeline hazards,

including Read-After-Write, Write-After-Write, etc. [44]. The reason is that the non-

4.5. Compiler Backends

69

stalling nature of the synchronous pipeline makes it impossible for a program to wait

indefinitely for an asynchronous mutex. However, for the X11, a mutex mechanism can

be achieved by looping or by controlling the traffic scheduling into the systolic pipeline.

If no hardware-provided mechanisms exists, all such shared accesses need to be

scheduled in advance when configuring the pipeline for a specific application.

Fortunately, the X11 architecture offers some means for providing more elaborate

accesses to shared resources. This includes support for atomic read-and-increment

operations both on the on-circuit counters engine as well as external RAM locations.

From the compiler perspective, a X11 packet program consists of a number of

instruction sequences that are laid out in the instruction memory of the pipeline. This

memory is actually a two-dimensional matrix with rows and columns where the control

flows unidirectionally and synchronously between columns, and branching occurs

between rows. Because of the unidirectional execution flow, loops are not possible by

definition; branches, however, are allowed. The layout of code in the instruction

memory can be seen as a two-dimensional optimization problem, where a vertical

column constitutes the instruction space of a single PISC, and the horizontal rows are

instruction sequences. The execution context contains a row instruction pointer so that

PISCs know which instruction to execute. Branching modifies the row instruction

pointer but does not affect the horizontal flow of the program.

The drawbacks to this programming model are tied to its advantages. First, looping is

not allowed: programs requiring loops need to be unfolded to some limit that fits the

pipeline. The X11 also provides a loopback path to let packets re-enter the pipeline if

the program is longer than the number of pipeline stages allows. The number of pipeline

passes, k, is statically configured at link-time and is limited since the throughput is

proportional to 1−k . The operating frequency of the X11 systolic pipeline is

dimensioned to allow a specific number of loops while still providing wire-speed.

4. Implementing the NetVM Model

70

Moreover, in order to avoid reordering, all packets coming from the same input

interface always undergo the same number of pipeline passes, even if the processing

could terminate earlier for some of them.

Second, there are few methods to share state between packets. In particular, it is

difficult for information from one packet to influence the processing of another. This

includes programs that adapt to traffic contents traffic, e.g., stateful packet filters. To

provide for shared state between packets, one can use the support from the existing

counter engine or implement some other, more elaborate mechanisms in the general-

purpose look-aside engines. It is also possible to communicate with the control plane,

which in turn can re-program the pipeline by altering the state of look-up tables, but this

approach has the obvious drawbacks of being limited in bandwidth and also may

introduce race-conditions.

4.5.3.2. A Back-end for the X11 NPU

The architecture of the X11 backend is shown in Figure 23.

The back-end translates the tree-based intermediate representation generated by the

upper layers of the compiler into the LLIR, while mapping the accesses to virtual

coprocessors on instructions that make use of the special purpose hardware features

(e.g. TCAMs) available on the target architecture. This task is performed by the Bottom

Up Rewriting System instruction selection phase.

In contrast to traditional processors, the X11 NPU completely lacks the concept of

function call; therefore a NetVM application composed of multiple NetPEs must be

transformed into a single compilation unit to be laid out as a linear code sequence

throughout the PISC pipeline. The X11 back-end compiler addresses this problem by

performing an inlining step in the compilation process, where the code belonging to

different NetPEs is linked together by replacing inter-module calls with jump

4.5. Compiler Backends

71

instructions. This inlining operation is possible only if the NetPE interconnection graph

is acyclic, however this property is intrinsically ensured by the NetVM model.

Afterwards, the intermediate representation is further optimized by removing

redundant instructions that might have been generated during the instruction selection

phase, then the resulting code is examined to detect independent instructions that are

suitable to be merged in VLIW blocks. At the end of the compilation process, a

resulting assembly file is created which can be used as an input for the X11 SDK tools

that create the proper binary files for loading and execution.

Tree-based Mid-Level IR

BUR
Instruction
Selection

Coprocessors
Mapping

NetPE Modules Inlining

Low Level Optimizations

VLIW Instruction
Merging

Linear Low-Level IR

X11 Assembler &
Configuration Files

Figure 23. Architecture of the X11 backend

4.5.3.3. The Mapping Process

Compiling a packet processing program for the X11 NPU does not differ

significantly from compiling it for any other kind of processor, as long as only the

generation of sequences of target instructions from high level constructs is considered.

However, some constraints that are specific to systolic architectures, along with some

characteristics of the X11 processor, suggest the adoption of specific compilation

4. Implementing the NetVM Model

72

techniques in order to best exploit the available hardware resources and to improve the

chance of a program to be correctly and efficiently compiled.

This section explores the major problems related to the efficient mapping of NetVM

applications on the X11 architecture and presents the most innovative aspects of the

NetVM compiler infrastructure.

Handling Loops

Since backward pointing branch instructions are forbidden, systolic array processors

are characterized by an "upstream to downstream" execution model, where the control

flow is driven by data flowing through the pipeline and cannot be redirected to a

previous stage. This translates to the impossibility of mapping generic loops on a

systolic array, unless their maximum number of iterations is bounded and known at

compile time, so that they can be completely unrolled and laid out as a linear sequence

of instructions. However, even in this case some practical problems arise: the theoretical

upper bound on the number of iterations may be so large that the resulting overall

instruction count could exceed the number of available stages even when using the

loopback path as described in Section 4.5.3.1.

If such considerations apparently pose a strong limitation on the kinds of applications

that can be successfully and efficiently mapped onto a systolic array network processor,

it should be noted that uncontrolled loops are not frequent in standard forwarding

programs (either L2 or L3) with the exception of some protocols (e.g., MPLS stacking

or IPv6 extension headers [25]). In such cases the problem can be overcome by limiting

the maximum number of loop iterations in the source program to a fixed value. Such

considerations point out that the theoretical limitation of systolic arrays in handling

loops may not be so relevant in practice.

4.5. Compiler Backends

73

Keeping the State of the Application

The NetVM model uses different memories to keep the state of an application. In

particular, state information local to a NetPE is stored in the NetPE local register file

and local data memory, the former keeping temporary values while the latter is used for

static values as well as complex structures. Vice versa, the state that is local to a packet

is stored in the packet buffer and a special buffer called the "info memory", i.e. a

memory segment that allows subsequent NetPEs to communicate between them.

On the X11 side, the execution context is represented by the packet memory and a

register file, while persistent state must be kept in externally attached memories that are

accessed through the EAPs. As a matter of fact there happens to be a significant

parallelism between the NetVM model and the X11 processor when it comes to data

associated with a packet. In particular, the X11 packet memory and register file allow

indirect addressing and can be used to map the NetVM packet buffer and the info

memory. Besides, a portion of the register file can be allocated for keeping intermediate

results as they are computed in the NetPEs, as well as local register values.

On the other hand, the two platforms differ in the way permanent data (i.e. the state

that survives across different packets) is treated. As detailed in Section 4.5.3.1, there are

constraints on how multiple, concurrent accesses to the same external memory location

can be made. Section 4.5.3.3 reports how in very specific cases the compiler is able to

handle this problem while still ensuring the safe update of shared memory locations.

Mapping NetVM Coprocessors

The NetVM model allows complex operations and functionalities to be represented

as invocations to virtual coprocessors. The back-end maps them on the corresponding

hardware features (if available on the physical device) in order to maximize the

efficiency of the resulting code. In particular, on the X11 processor this usually

4. Implementing the NetVM Model

74

translates to generating instructions that send and receive data to/from the EAPs and

declaring which engine operation should be performed.

A look-up coprocessor that allows the programmer to associate 32-bit keys to 32-bit

values was considered as a proof of concept. On the X11 the requested operation can be

performed by the integrated TCAM module. Since the same hardware unit must

possibly be shared with other instances of the same coprocessor (in a different NetPE)

or contain other unrelated content, the compiler provides a thin hardware abstraction

layer to split the TCAM into multiple tables. This is achieved by dedicating a portion of

the look-up key space to hold a table number.

NetVM coprocessors wrap a well-defined interface around a usually complex

algorithm; the compiler has the twofold task of translating the algorithm itself and

adapting the interface to the actual hardware units employed. While the latter task is

achieved by the compiler, the former might prove impossible due to possible limitations

of the hardware platform. In particular, if the target architecture does not provide the

specific functionalities exposed by a virtual coprocessor, a software emulation must be

performed. However, this might not always be possible due to restricted amount of

primitives provided by the hardware and limitations imposed on the instruction count.

 Exploiting the Features of the Hardware Architecture

The previous section explored the problem of mapping a virtual coprocessor (i.e., a

specialized macro-functionality) defined by the NetVM model on real hardware. This

section presents the dual problem, i.e., mapping generic NetIL code to some specialized

modules provided by the hardware.

Apart from the case where the source language exposes high level constructs that

find a natural mapping on specific hardware functionalities, the problem is in general

extremely complex: hardware modules usually implement complex algorithms that, in

order to be efficiently translated, must first be recognized in the source program.

4.5. Compiler Backends

75

The switch-case provides a simple example of an easily recognizable high-level

construct. The instruction count of a traditional implementation based on a linear search

might grow in complexity with the number of possible destinations, potentially using an

extensive portion of the pipeline. However, on the X11 the same behaviour can be

obtained by performing an associative look-up that uses the on-board TCAM, costing

effectively one pipeline stage only, independently from the number of possible

alternatives.

An unintended consequence of extensively using this mapping technique might be

the over-subscription of limited hardware resources. In particular, there are limitations

in look-up bandwidth and also the fact the EAPs are present at specific stages in the

pipeline. In this case the compiler should emit code that uses other pipeline resources

such as the PISC processors or different external units. Although deciding when to do

this is a complex optimization problem, the compiler tries to solve it through a simple

heuristic that works well in the average case.

Making the specialized functionalities provided by the X11 hardware automatically

available to the program requires in the general case more effort than mapping the

switch-case construct. A good example derives from the problems related to the

concurrent update of shared information mentioned in previous paragraphs. If the state

to be updated is an integral value, the compiler can make good use of the X11 support

for atomic increment instructions, thus becoming able to overcome concurrency issues

in a limited set of cases. A common example is keeping counters in external memory,

e.g. for statistical purposes.

A counter increment operation in itself is not atomic as it is necessary to fetch the old

value, increase it and store the newly computed result at the same offset. However if

this procedure is not performed atomically by the hardware it becomes possible for two

consecutive packets to read the same value from memory with the net effect of

4. Implementing the NetVM Model

76

incrementing the counter once instead of twice. To overcome this issue the compiler

uses the BURS-based instruction selector which is able to recognize if specific locations

of the data-memory are accessed through this pattern of operations, and to map them on

the special purpose atomic increment instructions provided by the hardware.

Depending on how the source code is written, it can happen that a pattern ends up

split across different statements. Since the BURS operates on a single IR expression tree

at a time, in this case the recognition mechanism does not work. No control on the

source code form can be assumed, so this issue would result in low reliability of the

compilation process if left unchecked. Vast improvements can be made by processing

the intermediate representation with appropriate optimization algorithms, such as

algebraic reassociation. These algorithms can rearrange subtrees in the IR so that the

semantic meaning of the program is preserved, but providing the instruction selector

with deeper trees that are more likely to contain recognizable patterns. This way the

BURS can operate successfully even if the related instructions were originally scattered

across a region of the source listing.

In any case, it must be pointed out that even though such techniques work well in

very specific cases, their general validity still needs to be proven, since they are tuned

on patterns of instructions and not on algorithms. In particular, even for the simple

example of counters, the programmer could update a specific memory location in

several exotic ways, preventing the BURS to recognize the sequence of instructions as a

predefined pattern. We believe that in order to deploy a general algorithm recognition

technique, more specialized analyses of the code should be performed.

VLIW Instruction Merging

Being VLIW processors, PISCs allow up to four independent operations to be

executed at the same time, in order to exploit instruction-level parallelism. These can be

(1) an ALU operation, (2) a move for copying words of up to 32 bits between different

4.5. Compiler Backends

77

locations of the register file and the packet memory, (3) a load offset operation for

indirectly accessing the register file or packet data, and (4) a branch.

When generating assembly code, the compiler should try to merge multiple

instructions in single VLIW words, taking care appropriately of data and control

dependencies. Several algorithms are described in literature for handling such task in an

optimal way, e.g., trace scheduling [45]. The compiler currently implements a simple

algorithm that works only on straight-line code fragments (i.e., basic blocks) and does

not perform any instruction reordering before merging. This provides good results, even

though it is a widely known result that the amount of instruction-level parallelism

present in a program is limited when considering only basic blocks, even more if

instructions are never reordered. It is likely that implementing a more aggressive

strategy would improve the emitted code quality significantly.

Automatic Computation of Data Size

While the NetVM model allows to fetch and store any data size (≤ 32 bits), registers

are 32-bit words. This is a problem for the X11 processor that works natively on 16-bit

words because of the larger overhead required to perform 32-bit operations, while often

these can be correctly carried out using only 8 or 16 bits.

Although this is clearly a limitation of the NetVM model that does not explicitly

support different data sizes, we decided to implement an heuristic algorithm in the X11

back-end that tries to assign to each NetVM register the optimal, minimum size while

preserving the program semantics. In the long term, this issue points out the necessity of

a revision of the NetVM model that will involve the addition of new NetIL opcodes to

provide the NetVM with hints about the appropriate data size.

4. Implementing the NetVM Model

78

4.6. Conclusion

This Chapter presented the design and implementation of an optimizing multi-target

compiler and run-time system for the NetVM model, in order to demonstrate its

capability to enable the portability of packet processing applications, while ensuring an

efficient mapping on a wide range of heterogeneous target platforms. In particular, the

compiler allows the translation of NetIL programs to native code of three different

architectures, exploiting the hardware features available on real network processors.

Even if the problem of partitioning applications across multiple symmetric execution

cores (e.g. like those of the Cavium Octeon network processor) has not been taken into

account, experimental results reported in Chapter 7 show that the generated code has

performances often better than those obtained from hand-written programs compiled

with state-of-the-art general-purpose compilers.

79

5. Assessing the programmability of
the NetVM

5.1. Introduction

In order to assess the capability of NetVM to be an effective platform for the

development of real-world applications, a clone of the popular Network Intrusion

Detection Sensor3 (NIDS) Snort [46] has been designed and implemented for the

NetVM. The choice of this type of application is due to its requirements in terms of

intensive packet-processing capabilities, dealing with all protocol layers and performing

deep packet inspection. In addition, IDSs are suitable for hardware acceleration because

3 A Network Intrusion Detection Sensor (NIDS), briefly IDS, is a network monitoring tool

designed to detect unwanted attempts at accessing, manipulating and/or disabling computer systems

on a network

5. Assessing the programmability of the NetVM

80

of their extensive use of regular expressions and lookup tables, which are often assisted

by specialized coprocessors on physical platforms.

In this Chapter, the architecture of the application is presented, showing that NetVM

provides a programming model that is general enough for supporting the development

of very complex packet processing applications that can be seamlessly ported onto

extremely different platforms. Indeed, experimental results reported in Chapter 0 show

that the Snort clone for the NetVM can be executed without any change on two

heterogeneous target architectures (namely the Intel x86 and the Cavium Octeon), with

performances that are comparable with those of the original application running

natively.

5.2. Related Work

The implementation of a complete Snort-like intrusion detection sensor on a network

processor was first explored by [47] that presents a compiler for generating C code from

a set of intrusion signatures to be executed on an Intel IXP1200 NPU. The choice of

generating C code was dictated by the need of exploiting the available development

toolchain. However, this solution requires recompiling the software offline (where

compilers are available), and then the updated code must be downloaded to the physical

platform. This solution is efficient in case of “stable” software, but it prevents the

possibility to have live updates for the software (e.g. updated security rules). Our

solution is also based on a compiler for translating a rule-database into executable code,

but the generated program is represented through an abstract assembly language that has

to be further translated into the target binary code by the NetVM JIT compiler.

Since network intrusion detection heavily relies on deep packet inspection

functionalities, such as string and regular expression matching, great effort has been

directed towards solutions for optimizing and offloading such processor intensive tasks

5.3. The Snort Intrusion Detection Sensor

81

through efficient algorithms and specialized hardware modules or coprocessors

[48][49][50][51][52][53]. Another approach is using optimized algorithms targeted over

the physical hardware platform; for example, [54] proposes a modified version of the

Aho-Corasick [42] string-matching algorithm that can be executed in parallel on several

microengines of the Intel IXP1200 network processor.

Differently from other research projects, the proposed approach aims at validating

the entire application instead of speeding up specific functions such as only string and

regex matching.

5.3. The Snort Intrusion Detection Sensor

Snort [46] is the implementation of a passive network IDS that is the de-facto

reference in this class of applications; hence it seemed an obvious choice to design our

own IDS by keeping compatibility with its rules and alerting formats. In this way our

IDS would get immediate benefit from the huge database of already-existing attack

signatures, which would also offer an excellent testing environment.

Snort is currently capable of performing real-time traffic analysis and packet logging

on IP networks. Its capabilities include protocol analysis and content searching, which

can be used to detect a variety of attacks and probes, such as buffer overflows, stealth

port scans, CGI attacks, SMB probes, OS fingerprinting attempts and many other

security threats.

Snort uses a database of rules to describe the known attacks. Each rule is written on a

single line of ASCII text through a flexible description language and is divided into two

logical sections: the header and the options. The rule header contains an action, a

protocol, source and destination IP addresses and netmasks, and source and destination

transport-protocol level ports. The rule options section contains a series of keywords,

5. Assessing the programmability of the NetVM

82

which can be used to specify additional tests that should be performed on a packet, such

as searching for a particular string or a regular expression in the payload, or checking if

the “code” field of an ICMP packet matches a particular value. If all the tests specified

in a rule are verified, then the corresponding action is undertaken (e.g. sending an alert

an/ord logging the packet). For example, the following rule:

log tcp any any -> 10.1.1.0/24 80 (content: "GET"; msg: "HTTP
GET";)

logs every packet coming from any host and directed to port 80 of any machine of

the 10.1.1.0/24 network containing the ‘GET’ string. Such packets will be logged with a

message saying “HTTP GET”.

The architecture of Snort is highly modular: it includes a Decoder module, which

aims at locating protocol offsets and field values, a set of preprocessors that are used to

normalize the packet when needed (e.g. an SSL decrypter in order to allow the

following code to perform tests on the content, an IP defragmenter module, etc.), and

the detection engine, which is the core of the application, where incoming packets are

matched against the rule database in search of a possible security threat.

The detection engine will use several strategies for reducing the amount of checks

that must be performed on the packets. For example, Figure 24 shows an optimization of

the content matching module based on the TCP destination port contained in the rules.

In this example, content matching tests are grouped according to the TCP destination

port contained in the packet, i.e. if the tcp.dstport is equal to 80, only the first, second

and fourth rules (hence keywords “POST”, “HEAD” and “GET”) need to be tested by

the content module. In case this control matches, these rules are set as “potentially

matching”, and the processing continues with further steps that aim at checking all the

field rules. However, it is evident how this strategy (which in fact is more elaborated

5.4. Architecture of the NetVM IDS Sensor

83

than in this example) can reduce the amount of checks that needs to be performed on

every packet. Besides, using similar techniques, rules can also be grouped by other

packet-specific properties, like the source and destination ports for TCP and UDP

packets, creating even smaller subsets.

More details on the Snort IDS can be found in [46].

Rules Example
=============

log tcp any any -> 10.1.1.0/24 80 (content: “POST"; msg: "HTTP POST";)

log tcp any any -> 10.1.1.0/24 80 (content: “HEAD"; msg: "HTTP HEAD";)

log tcp any any -> 10.1.1.0/24 21 (content: “PORT"; msg: “FTP PORT";)

log tcp any any -> 10.1.1.0/24 any (content: "GET"; msg: "HTTP GET";)

Generated code (content matching module)
==

switch (tcp.dstport)

{

case 80: CheckPattern (“POST”, “HEAD”, “GET”)

break;

case 21: CheckPattern (“PORT”, “GET”)

break;

default: CheckPattern (“GET”)

break;

}
Figure 24. Rules optimization in Snort.

5.4. Architecture of the NetVM IDS Sensor

The IDS sensor for the NetVM is not a direct port of Snort; the two applications

share almost no lines of code. Among the reasons for this choice are the lack of a C

compiler for the NetVM and, more important, the belief that the C language is not

always the best choice for highly packet-oriented processing applications. Our solution

is based on a custom compiler that takes Snort rules and creates NetVM assembly. Even

lthough the inputs and outputs of the application are the same as those of Snort (for

instance, Table 2 shows the list of Snort keywords supported in our IDS sensor), its

5. Assessing the programmability of the NetVM

84

internal architecture had to be redesigned from scratch in order to take full advantage of

the NetVM paradigm, which tries to exploit the intrinsic modularization seen in packet-

processing applications that are usually made up of several short and independent tasks.

As the Snort rule format basically specifies tests that might involve the different

protocols present in a packet, we decided to create different modules, instantiated on

different NetPEs. Tests on each protocol are performed in the NetPE responsible for it,

with the exception of some special functions (such as packet analysis and pattern

matching) that are not associated to a single protocol and that are allocated to specific

NetPEs. For instance, a rule such as “log tcp any any -> 10.1.1.0/24 80 ”

will involve generation of code in different modules: the IP one will check that the

destination address matches; the TCP module will be involved for checking the value of

the TCP destination port, and so on. The rule will match only if all the tests are verified.

The final architecture is shown in Figure 25.

Table 2. Snort Keywords Supported by the NetVM IDS Sensor

Keyword Description
msg Message to use when logging
sid Unique rule identifier used to keep track of developed rules
rev Rule revision, used by Sourcefire
classtype Type of attack the rule detects
reference References to well-known application exploits the rule detects
itype Search for a particular ICMP Type
icode Search for a particular ICMP Code
icmp_id Search for a particular ICMP ID
icmp_seq Search for a particular ICMP Sequence number
dsize Payload length
content Search for a string in the packet payload
depth Limit string search to a certain number of bytes
offset Skip a certain number of bytes before string search
within Limit string search to a certain number of bytes after a preceding string match
distance Skip a certain number of bytes when searching after a preceding string match
nocase Match a string case-insensitively
flow Match a specific state/direction of a TCP connection
pcre Search for a regular expression in the packet payload

The NetPE abstraction offers the possibility of an excellent modularization: each

module is almost independent, and performance can be incremented by simply

improving the code generation for NetPEs that represent the bottleneck, implementing

5.4. Architecture of the NetVM IDS Sensor

85

ad-hoc strategies to minimize the number of tests to be performed on a packet. For

instance, some rarely used modules (e.g. ICMP counts for a few rules in the entire

ruleset) use a very simple algorithm (linear search), while others implement smarter

strategies. Global optimizations can also be implemented in the NetVM framework to

be able to reduce the size of the target code.

This does not prevent global optimizations implemented in the NetVM framework to

be able to reduce the size of the target code.

Protocol
analysis

String-matching
coprocessor

Packets

RegEx-matching
coprocessor

Content
Matching

Ethernet

IPv4

IPv6 ICMP

UDP
Payload
Options

TCP
Conn.

Tracking

Conn.
Status

Matching

Lookup
coprocessor

Matches

Figure 25. Architecture of the NetVM IDS sensor

As told in Chapter 2, NetPEs communicate among themselves through “exchange

buffers”, i.e. meta-packets that, besides the packet buffer, contain additional data (e.g.

time stamps) and a dedicated area called “info partition” where NetPEs can store state

information that flows through the NetVM following the same path of the packet. Each

module composing the IDS exploits the “info partition” for keeping the matching state

of every rule and for communicating it to subsequent modules. In particular, as Figure 26

shows, the info partition is divided in two parts: the former contains a bit-vector, in

which every bit represents a rule, while the latter is further organised into several 32-bit

slots, each one containing data extracted from the packet, such as source IP address,

port, etc.. When a packet enters the application, the bit vector is initialized to zero (i.e.,

5. Assessing the programmability of the NetVM

86

no match) and the content matching module selects the group(s) of rules that are

suitable for further processing by checking the proper patterns and by turning the

corresponding bits to one. Then, the following modules should refine these controls by

checking that all the conditions of each rule are verified. As soon as one condition does

not match, the corresponding bit in the rules bitvector is reset; at the end, only the rules

that have this bit set are matched.

IP src IP dst ...

R1 R2 R3 R4

Bitvector containing rules results

Offsets of protocol/fields

R5 ...

P
ac

ke
t

In
fo

 P
ar

tit
io

n

Figure 26. Exchange buffer: packet data and info partition

5.4.1. Packet-processing workflow

In our architecture, the processing of a new packet starts with the Protocol Analysis

module that extracts information on the protocol headers that are contained into the

packet and records the starting offset of the payload (if any). This piece of information

is stored inside the “info partition” of the exchange buffer and is therefore made

available to all the following modules in the chain. The next module is dedicated to

Content Matching, which does some cross-layer checks in order to reduce the amount of

strings to be tested on each packet and that matches the payload against a set of static

patterns and regular expressions specified in the source rules. Since this task is the most

processor-intensive, it relies on string and regular expression matching coprocessors

provided by the NetVM architecture, which on general purpose platforms are emulated

by software. The location of this module, almost in front of the processing chain, is due

to performance reasons. In fact, the search is carried out by a modified version of the

well-known Aho-Corasick algorithm [42] that allows several patterns to be searched at

5.4. Architecture of the NetVM IDS Sensor

87

the same time. As a result, if a pattern is found inside the payload, only the subset of

rules based on it needs to be extensively verified.

Further modules will refine the processing by performing only the tests that are

required on the subset of rules that have been selected as “possibly matching” in the

previous modules. For instance, the IP, TCP and UDP modules group together all the

rules that have the same addresses/ports, so that they only have to check each different

combination of IP and netmask once. Another optimization consists in testing the

destination address/port first, and then, if it matches, the source address/port. This

approach is justified by the fact that, in real rule-sets, most rules have an unspecified

(i.e.: “any”, in Snort terms) source address and a precise IP as destination address,

which stems from the fact that attacks come from anywhere, while the addresses of the

servers in the internal network are well-known. Testing if the packet contains a precise

destination address allows discarding a large number of packets immediately, reducing

the ones that need to be further processed in order to detect a match.

The Ethernet module only checks if the packet contains IPv4 or IPv6, and sends it to

the proper module, or just discards it in case the network-layer protocol is not

supported. This module is extremely simple and does not provide any rule matching

functionalities, since Snort rules do not support data-link layer tests (e.g., MAC-address

based filtering).

The IPv4/IPv6 modules implement the tests over source and destination network

addresses, while the TCP and UDP modules take care of checking the source and

destination TCP/UDP ports of the packet, and the ICMP one checks all the possible

ICMP options, which involve tests on the ICMP type, code, ID and sequence number.

The Connection Tracking and Connection Status Matching modules perform stateful

TCP connection tracking, distinguishing who initiated the connection (i.e., server vs.

client), the direction a packet is travelling in (i.e., from server to client or vice-versa)

5. Assessing the programmability of the NetVM

88

and the state of the connection (i.e., established or still in the handshake phase). This

task is performed with the aid of a lookup coprocessor that acts as an associative

memory holding information on the current state of active TCP connections. Finally, the

Payload module handles the matching of non-content payload-related options, such as

tests on the payload size.

Connections among the various PEs are organized so that each incoming packet only

traverses the subset of PEs dealing with the protocols it contains. This could be easily

achieved through a scheme modelled after the TCP/IP protocol stack, as shown in

Figure 4. This architecture has many advantages. First, each protocol is analysed only

once. Second, the knowledge of a protocol is embedded in a single place, making the

debugging easier and improving the handling of a protocol. Furthermore, the addition of

a new protocol simply requires a new NetPE to be inserted in the chain (and the

compiler to be updated to generate the new code for the NetPE). Third, the number of

traversed NetPEs is small, i.e. packets traverse only NetPEs responsible of protocols

that are present in the packet (i.e. an UDP packet will not traverse the NetPE dedicated

to TCP), with a clear advantage from the performance viewpoint. Fourth, the

architecture is suitable for pipelining. At the moment, the application handles one

packet at a time, but potentially it could handle more packets if NetPEs can be

instantiated on different physical execution units (e.g. in case of the Octeon multicore

chip).

5.4.2. The code generation process

The traditional approach in intrusion detection applications is usually based on

iterating over the rules that are represented in memory as complex data structures. For

our IDS we decided to follow a different approach to the problem. In our

implementation, rule checks are directly embedded in the code. In particular, instead of

producing static programs that iterate over data structures in memory, the code directly

5.5. Conclusion

89

implements all the checks needed for matching packets against specific portions of the

rules. Such a choice is based on the consideration that rules data remains constant

throughout the execution of the program and such information can be exploited in order

to emit checks (i.e. branch instructions) based on constant values (instead of checks

based on values loaded from memory), producing more efficient code and opening the

way to further optimizations. Since the resulting program is almost totally created at

run-time, the entire code must be regenerated in case some rules change.

5.5. Conclusion

In this Chapter the implementation of a network intrusion detection sensor for the

NetVM platform has been presented, in order to demonstrate that the NetVM

programming model is suitable for creating complex packet-processing applications.

The current status of the IDS sensor is not as mature as the original Snort. For

instance, some features (such as the IP defragmenter and TCP flow reassembly) are

missing, and some application-layer keywords in the rule language are not supported.

However, the objective was not to create a perfect clone of Snort, but to implement a

reasonable proof-of-concept application for demonstrating the validity of the NetVM

model. From this point of view, results are interesting, since NetVM primitives (i.e. the

NetIL instruction set and the abstraction provided by virtual coprocessors) allow to

effectively handle packet processing at all networking layers. Moreover, experimental

results reported in Chapter 7 show that the runtime performances achieved are almost

comparable with those of the native Snort.

On the other side, it is worth noting that NetIL is not a suitable language for

programming the NetVM by hand, since it sits at a too low level of abstraction for a

programmer (i.e. it is comparable to an assembler language), and its stack-based nature

strongly limit its readability. However, this should not be considered a limitation of the

5. Assessing the programmability of the NetVM

90

NetVM model, which is by design based on a mid-level programming language and

aims at being an ideal target for several high-level programming languages.

91

6. Flexible Generation of Packet
Filtering and Field Extraction
Programs

6.1. Introduction

In order to demonstrate the possibility of decoupling the logic of a packet processing

application from the knowledge of the actual format of the supported network protocols,

while still ensuring runtime performances that are comparable with those of equivalent

applications relying on hardcoded protocol descriptions, a compiler for the dynamic

generation of packet filtering and field extraction programs has been designed and

implemented.

Both filtering and field extraction rely on packet demultiplexing, i.e. a functionality

for recognizing the full sequence of protocol headers contained in network packets. For

example, a filter on “TCP” would first check whether the data-link frame contains an IP

header, then it would check the IP header for a TCP header indication. Finally, if such

sequence of conditions is completely satisfied, the corresponding action is triggered.

6. Flexible Generation of Packet Filtering and Field Extraction Programs

92

Similarly, extracting the values of the source and destination ports of the TCP header

requires to first check if packets contain a TCP protocol header (i.e. a filter on TCP is

applied) and then the actual values of the desired fields can be loaded from the packet

buffer and made available to the user for further processing.

Demultiplexing programs implementing high level filtering predicates are usually

generated by a compiler through routines, hardcoded in the compiler itself, that emit a

sequence of checks on the values loaded at specific offsets of the packet buffer. For

instance, such approach is taken by the libpcap library, which provides an API for the

translation of simple filtering rules into a program for the BPF virtual machine [55]. The

lack of flexibility in supporting new protocols, which requires the compiler to be

extended (i.e., rewritten), represents a problem from the maintainability point of view.

For example, in order to support a previously unsupported protocol, the compiler must

be modified in several points: (i) new tokens representing the names of the new protocol

and its fields must be added to the lexical scanner of the parser, (ii) the code generator

routines must be extended for generating the proper checks on header fields, and (iii)

already working routines must be made aware of the newly supported protocol.

The compiler presented here overcomes such limitations by decoupling the code

generation process from the knowledge of the format of protocol headers, which resides

in an external NetPDL database. In particular, NetPDL protocol descriptions are

translated into packet demultiplexing programs that implement high level filtering rules

expressed in the Network Packet Filtering Language (NetPFL). The generated code can

be directly executed on any implementation of the NetVM virtual machine.

6.2. Generating Packet Filtering Programs from NetPDL and NetPFL

93

6.2. Generating Packet Filtering Programs from
NetPDL and NetPFL

In our compiler, we consider a packet filter as a program composed by two main

sections: (i) a packet demultiplexing section, where the sequence of the headers carried

by each packet is analyzed looking for a specific protocol, and (ii) a section where some

conditions on one or more fields are evaluated and the corresponding action is triggered.

In other words, the packet filter looks for the first occurrence of the specified header

inside the packet and then checks some conditions on one or more of its fields, as shown

in Figure 27. In our discussion we will focus mainly on packet filtering, because field

extraction programs follow a scheme that is very similar to the one described, except

that field values are loaded from the packet buffer and used by other modules instead of

being evaluated by filtering conditions.

eth ip tcp ...eth ip tcp ...

eth

arp ip

tcp
udp

icmp

(a) Packet Demultiplexing (b) Check on protocol fields

tcp.dport == 80 returnpacket

Packet contains TCP

no yes

return packetdrop packet

dport == 80?

Incoming packet

NetPFL Rule

Figure 27. Filtering program as the composition of (a) a packet demultiplexing section and (b) a section for

checking conditions on the target protocol fields

6.2.1. The Protocol Encapsulation Graph

Considering a NetPDL database, encapsulation relationships that exist between

protocols can be used to identify a directed graph G(V,A), where each node V represents

6. Flexible Generation of Packet Filtering and Field Extraction Programs

94

a protocol in the database, and an edge e(x, y) is directed from the node x to the node y,

if the protocol y can be encapsulated into the protocol x. We call such a graph a Protocol

Encapsulation Graph, or encapsulation graph.

The encapsulation graph exposes the layered nature of network protocols and has

some similarities with the concept of Protocol Graph, i.e. a directed acyclic graph

employed for describing the use relations existing between the different components of

a multi-protocol communications system [56]. However the encapsulation graph allows

paths between nodes to be cyclic, making evident the cases of protocols that can be

tunneled, like IPv4 encapsulated in IPv4, IPv6 in IPv4 and vice-versa, or cases like an

ICMP message encapsulated in IPv4, which carries a further IPv4 header (belonging to

the packet that generated the message), and more.

Figure 28 shows how complex an encapsulation graph can be. In particular, it shows

the encapsulation graph corresponding to a subset of the current NetPDL database,

containing only some protocols up to the transport layer.

6.2. Generating Packet Filtering Programs from NetPDL and NetPFL

95

startproto

ethernet

vlan

arp ip

ipv6

llc

icmp igmp

tcp udp

igrp eigrp ospf

icmp6

snap 8021d

Figure 28. Protocol Encapsulation Graph.

6.2.2. Packet Demultiplexing

In the proposed model, the first section of a generic packet filter needs to parse the

sequence of headers, while looking for a specific protocol. Since the encapsulation

graph represents the union of all the demultiplexing paths that lead to every protocol

defined in a NetPDL database, we can leverage such information by considering only

the set of paths that lead to the protocol we are looking for, i.e. a sub-graph of the

encapsulation graph. Since the characteristics of the encapsulation graph ensure that a

single source node always exists (i.e. the node corresponding to the startproto protocol),

a reverse postorder visit starting from a generic node N will identify a subgraph that is

the union of all the paths leaving from the startproto node, leading to N itself.

6. Flexible Generation of Packet Filtering and Field Extraction Programs

96

Procedure GenFilterCode(Node n, Expr e)
Begin

TargetProtocolNode = n
For each p in EncapsulationGraph

p.visited = false

RPO_Visit(n)
If (e)

GenCodeForSection(TargetProtocolNode.Format)
GenCodeForExpr(e)
If (!TargetProtocolNode.successors.empty())

GenCodeForSection(TargetProtocolNode.Encapsulation)
End

Procedure RPO_Visit(Node n)
Begin

If (n.visited)
Return

n.visited = true
For each p in n.predecessors

RPO_Visit(p)
GenCode(n)

End

Procedure GenCode(Node n)
Begin

If (n ≠ TargetProtocolNode)
GenCodeForSection(n.Format)
GenCodeForSection(n.Encapsulation)

End

Figure 29. Code Generation Algorithm.

Given such considerations, our strategy for generating a packet filtering program

through NetPDL is presented in the algorithm of Figure 29. The code generation process

is driven by the GenFilterCode() procedure that accepts as arguments the node

corresponding to the protocol on which the source filter is set (e.g. “ip ”), and an

optional expression evaluating some of its fields (e.g. “dst == 10.0.0.1 ”). Briefly,

the algorithm performs a reverse postorder visit on the encapsulation graph starting

from the target node (i.e. the node relative to the protocol to be searched). Then, it

generates the code related to the format (which is required in order to be able to locate

every field of the selected protocol) and the encapsulation (which is required to be able

to link the current protocol to its successor nodes) sections, for all the protocols

encountered during the visit. In particular, the encapsulation section can be modelled as

a multi-target branch instruction, i.e. a generic switch-case construct, which evaluates

the content of some header fields, and where each branch leads to the code generated for

6.2. Generating Packet Filtering Programs from NetPDL and NetPFL

97

the protocols corresponding to the successor nodes of the one being visited, while a

special branch is directed to a “filter-false” exit label for indicating the absence of a

match. Some exceptions arise for the target protocol (i.e., the protocol we want to

locate), in which the code has to be generated in a slightly different manner. For

example, if the source filtering expression evaluates some fields of the target protocol

header, the GenCodeForSection() procedure is invoked in order to generate a

portion of code for locating them, while the GenCodeForExpr() generates the final

check. Furthermore, if the target protocol node has any successors (the encapsulation

graph can contain loop) the GenCodeForSection() procedure translates its

encapsulation section, giving the opportunity to find a match in subsequent tunneled

instances of the same protocol header, even if the current header does not match the

filter. For instance, in case of an IPv4 in IPv4 tunneling the external IP header may not

match the filter, while the internal one can.

Figure 30 shows the results of the two phases of the code generation process for the

NetPFL rule defined in the example: (a) shows the portion of the encapsulation graph

representing all the demultiplexing paths that lead to IP, while (b) shows the

representation of the generated code as a control flow graph.

The sample filter is matched when the first IP header containing a destination address

field equal to the 10.0.0.1 is found. If the first IP header does not match the filtering

condition, the program continues to parse the packet by following the demultiplexing

paths of the subgraph until it finds a match, or it reaches a terminal node (e.g., the end

of the packet).

6. Flexible Generation of Packet Filtering and Field Extraction Programs

98

startproto

ethernet

ip

vlan

llc

ipv6icmp

snap

icmp6

(b)(a)

ethernet:
 locate_field(ether_type)
 check_field(ether_type)

ip_check:
 locate_fields(nextp, dst)
 dst==10.0.0.1?

ip

vlan:
 locate_field(vlan_type)
 check_field(vlan_type)

vlan

llc:
 locate_field(llc_dsap)
 check_field(llc_dsap)

llc

ipv6:
 locate_field(next_hdr)
 check_field(next_hdr)

ipv6

filter false

F

ip_encap_check:
 check_field(nextp)

F

filter true

T

ip

llc

ipv6

F

ip
snap:
 locate_field(snap_type)
 check_field(snap_type)

snap

F

ip

F

ip

icmp:

icmpipv6

F

ipip

icmp6:

icmpv6 Fipv6

Figure 30. (a) Demultiplexing Paths and (b) Control Flow Graph for the filter “ip.dst == 10.0.0.1
returnpacket ”

6.2.3. Locating header fields

In NetPDL, every field declaration not only identifies a specific sequence of bytes

into the packet buffer, but implicitly tells where the next field will start. In particular,

the offset of a header field defined in a NetPDL database is not specified explicitly, but

it can be implicitly derived by adding the offset and the size of its preceding field, as in

(4).

6.3. The Compilation Process

99

Offs(Fieldi) = Offs(Fieldi-1) + Size(Fieldi-1) (4)

This rule can be used to map the protocol format into a sequence of instructions for

identifying the actual offset and size of every field. Unfortunately, most protocols

include fields whose size is known only at run-time, which prevents this computation to

be performed at compile-time. Besides, since different packets can take different

demultiplexing paths, even the starting offset of a specific header cannot be known in

advance. Given such considerations, the cleanest way for generating a portion of code

for locating header fields inside packets is to translate the entire <format> section of a

NetPDL description to a sequence of instructions that implement the scheme described

in (6), and to delegate the task of removing useless and redundant code to a series of

optimization steps. Such choice is based on the fact that the evaluation of the content of

some fields performed in encapsulation and filtering conditions can be treated like uses

of particular variables (i.e. the fields). Using simple data-flow analyses, the instructions

defining variables that will never be used can be detected and safely removed.

Moreover, the definitions of fields of fixed size can be subject to the application of

constant propagation techniques. Section 6.3.3 will provide more details on such topic.

6.3. The Compilation Process

The techniques described in the previous section have been implemented in a

compiler for the translation of NetPFL rules into executable code for the NetVM virtual

machine, through the exploitation of the information on the format of network protocols

resident in an external NetPDL database. The compiler adopts a traditional architecture

that includes a front-end component that translates the source program in a more

manageable intermediate representation (IR), an optimizer, and a back-end for the

generation of the target executable code.

6. Flexible Generation of Packet Filtering and Field Extraction Programs

100

6.3.1. Code Generation

In a first phase the compiler parses the NetPDL protocol database by gathering the

names of protocols and fields. At the same time the encapsulation graph is created for

modelling the encapsulation information defined in the NetPDL description. Then the

source NetPFL rule is parsed, while ensuring that the filtering expression refers to

available protocols and fields. If the filtering expression is made up of terms related to

different protocols, the parser also tries to group together sub-expressions that include

terms referring to the same protocol. This ensures that each one of such sub-expressions

can be implemented by (i) a demultiplexing program for searching the specified

protocol and (ii) a portion of code for checking the values of fields of the header. In

such way, a compound filter (i.e., which refers to different protocols) can be generated

through the algorithm reported in Figure 29 for each sub-expression referring to the same

protocol, and by linking together all such portions of the program, as shown in Figure 31.

The optimization of composed filters is left to future work.

ip.src == 10.0.0.1 and ip.dst == 192.168.0.1
and

tcp.dport == 80

Portion of the filter searching
for IP and evaluating the

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Portion of the filter searching
for IP and evaluating the

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Subfilter 1

Subfilter 2

Filter FalseFilter False Filter TrueFilter True

T

T

F

F

Portion of the filter searching
for TCP and evaluating the

condition:
dport == 80

Portion of the filter searching
for TCP and evaluating the

condition:
dport == 80

Figure 31. Composed filter.

During the IR generation phase, all the encapsulation and filtering conditions

referring to fields are translated into checks on integer values loaded from the packet

memory (if the size of the field is less than or equal to 4 bytes), or into string

comparison operations (for fields greater than 4 bytes). References to bit-fields are

6.3. The Compilation Process

101

translated into masking operations on values loaded from the packet buffer. Finally,

structured control flow constructs such as if-then-else, and loops are lowered to explicit

branch operations.

The generated intermediate representation of the resulting filtering program can then

be optimized and finally translated to the target NetVM executable code.

6.3.2. Field Extraction

In order to handle field extraction rules, the code generation mechanism described so

far is extended with the possibility to record the actual offset and size of the fields

specified in a NetPFL extractfields() statement. In particular, since it is possible

to request the extraction of fields belonging to different protocols, the algorithm

described in Figure 29, is extended with the capability to visit in reverse post-order a

more complex subgraph of the encapsulation graph, with more than a target protocol,

because the generated program should be able to follow all the demultiplexing paths

leading to each of them. Besides, for each target protocol, the appropriate statements are

generated for storing the offset and size of the fields referenced in the NetPFL rule.

Such mechanism is exemplified in Figure 32, which shows the main phases involved

in the generation of a program implementing the NetPFL rule

“extractfields(ip.src, tcp.dport, udp.sport) ”. Figure 32A shows a

minimal encapsulation graph containing only the Ethernet, ip, arp, tcp and udp

protocols. Since the extractfields() rule specifies to extract some fields from the

ip, tcp and udp headers (namely ip.src, tcp.dport, and upd.sport), these protocols are

considered as the targets of the demultiplexing paths to be taken into account for

generating the code. Such demultiplexing paths identify a subgraph of the encapsulation

graph, which is shown in figure Figure 32B, with target nodes annotated with the names

of the fields to be extracted.

6. Flexible Generation of Packet Filtering and Field Extraction Programs

102

dport sport

(A)
Encapsulation

graph

(B)
Demultiplexing

subgraph

(C)
Resulting

Control Flow Graph

src

Figure 32. Code generation phases for the NetPFL rule “extractfields(ip.src, tcp.dport, udp.sport)”

Figure 32C shows the resulting control flow graph. The code is generated in a similar

fashion respect to the case of packet filtering, by visiting the subgraph in reverse post-

order (i.e. with a depth-first traversal where all the predecessors of a node are visited

before the node itself), starting from target nodes: the <format> section of each

protocol is translated into instructions for locating the fields required (i.e. those needed

by encapsulation rules or requested for field extraction), while each

<encapsulation> section is translated into branch instructions pointing to the next

protocols. Besides, for protocols annotated with fields to be extracted, specific

instructions for storing the offset and size of each field are generated. In particular, in

order to communicate the extracted information to the user, the Info memory provided

by NetVM is exploited, and the list of fields specified in an extractfields() rule

is directly mapped on specific locations of the Info partition of the exchange buffer, as

exemplified in Figure 33.

6.3. The Compilation Process

103

extractfields(ip.src, tcp.dport, udp.sport)

Field 1
offset

Field 1
size

Field 2
offset

Field 2
size

Field 3
offset

Field 3
size

NetVM
Info Memory

Figure 33. Allocation of fields on NetVM Info Memory locations

6.3.3. Optimizations

The translation of NetPDL descriptions into sequences of instructions for locating

header fields produces a large amount of redundant code, which is reduced through a set

of optimization steps. In particular, the definitions of variables that are never used are

identified and safely removed by a dead store elimination phase, while a constant

propagation phase recognizes the variables that hold a constant value and substitutes

their use with the direct use of the constant. Since constant propagation can transform

expressions evaluating variables in expressions evaluating only constant values, it is

supported by a constant folding phase for substituting such sub-expressions with their

result computed at compile-time. Besides, the lowering to explicit branch instructions of

structured control flow constructs produces several sequences of jump to jump

instructions that can be easily individuated and coalesced by inspecting the control flow

graph.

The quality of the generated code could be further improved by applying more

specialized optimizations like those proposed by Begel et. al. in [57] for eliminating

redundant checks on the same fields and for reducing the overall depth of the control

flow graph of composed filters; however the implementation of such algorithms was

outside the scope of the current work.

6. Flexible Generation of Packet Filtering and Field Extraction Programs

104

6.4. Conclusion

This Chapter presents the architecture of a compiler and a set of techniques for the

dynamic generation of packet filtering and field extraction programs from NetPFL rules

and NetPDL protocol descriptions, which constitutes the base for a novel approach to

the development of packet processing applications whose logic is decoupled from the

knowledge about the format of network protocols.

In order to minimize redundancies, the compiler deploys appropriate optimization

techniques, leading to code that, in some cases, is completely equivalent to that of

similar programs based on the hardcoded approach, as reported in Section 7.2. This

demonstrates that the dynamic generation of efficient packet filtering and field

extraction modules from NetPDL is feasible, with the advantage of adding support for

new protocols or new encapsulation paths without changing the application code.

105

7. Experimental Results

7.1. NetVM Snort Evaluation

The capability of the NetVM snort front-end to generate NetIL code from a real

Snort rule database has been assessed using an official ruleset provided by the Snort

website in February 2007, which includes a total of 3058 rules, 1389 of them supported

by the application. Such an apparent limitation is mainly due to the high number of

rules requiring normalization and inspection of the URI field of HTTP headers (i.e. the

“uricontent” option), which is a feature currently not supported. However, since the

main goal was to demonstrate the ability of NetVM to allow the development of

complex packet processing applications and not the complete compatibility with Snort

features, such number can be considered a fair one, because it includes all the rules

needing deep packet inspection functionalities (i.e. string and regular expression

matching), and it is in line with the number of rules taken into consideration by other

research works [51][52][53].

Table 3 shows the number of NetIL instructions generated from the abovementioned

ruleset for each module of the IDS. From the table it is evident that the Content

A.1. Xelerated X11

106

Matching module is the one with the highest number of instructions. The reason

depends on the complexity of the rules involving content matching options. In

particular, when a match is found for the first content option, all other patterns

eventually specified by the rule must be extensively searched inside the payload.

Moreover, the first match could trigger more than one rule, making the generated code

extremely complex.

Table 3. Number of NetIL instructions generated for each module

Module Number of NetIL instructions

Analyzer 137
Content Matching 38872

ethernet 10
ip 4531

icmp 5547

udp 4806
tcp 5127

Connection Tracking 141
Conn. Status Matching 6228

Total 65399

The time needed by the rule compiler for generating the code is comparable with the

one of the native Snort fed with the same database, containing only the rules supported

by both tools. In particular, the NetVM based IDS compiles 1389 rules in 1,72 s, against

the 1,25 s measured for Snort.

Since the runtime performances of the IDS depend on the capability of the NetVM

framework to generate efficient code for the target architecture, detailed performance

results will be reported in Section 7.3.

7.2. NetPDL/NetPFL Compiler Evaluation

This section assesses the ability of the NetPDL/NetPFL compiler to generate NetIL

filtering programs from simple NetPFL rules and compares the results with equivalent

A.1.1. The pipeline

107

filters generated for the BPF virtual machine by the well-known libpcap/tcpdump tools.

As an example, translating the NetPFL rule

ip.dst == 10.0.0.1 returnpacket

into executable code for the NetVM virtual machine results in the optimized filtering

program shown in Figure 34.

push 12 ;offset of the ethertype field
upload.16 ;load the ethertype field
push 2048 ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field
push 167772161 ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1 ;filter true

DISCARD:
ret ;filter false

Figure 34. NetIL code generated for the filter ip.src==10.0.0.1 with a minimal NetPDL DB

The corresponding BPF filter generated through the tcpdump tool is shown in Figure

35.

(0) ldh [12] ;load the ethertype fi eld
(1) jeq #0x800 jt 2 jf 5 ;if ==0x800 goto 2, el se goto 3
(2) ld [30] ;load the ipdst field
(3) jeq #0xa000001 jt 4 jf 5 ;if ==10.0.0.1 goto 4, else goto 5
(4) ret #1514 ;return the frame leng th
(5) ret #0 ;return false

Figure 35. BPF code for the filter ip.src == 10.0.0.1

Besides the intrinsic differences between BPF and NetVM architectures (i.e. the

NetVM is stack-based while the BPF virtual machine is register based), we can see that

two programs are functionally equivalent. Both check the Ethernet type field against

value 0x800 , then check if the IP destination field contains address 10.0.0.1 ; the

packet is accepted only if both conditions are true. The primary difference between the

two approaches is not immediately visible, because it relates to the simplicity in adding

A.1. Xelerated X11

108

support for new protocols (e.g. a new data-link layer protocol). In the case of the

presented compiler it is sufficient to update the XML file containing NetPDL protocol

descriptions, while in the other case some of the libpcap source files must be modified

and the library must be recompiled.

Since NetPDL supports a wide variety of protocols and cyclic encapsulations, the

programs produced by the NetPDL/NetPFL compiler are way larger than the

corresponding BPF filters. For instance a non-optimized IP filter generated using the

standard NetPDL database counts 292 statements, versus 4 statements of the

corresponding BPF program, as show in Table 4. However, while BPF only identifies IP

packets directly encapsulated within a lower layer packet, the abovementioned NetPDL-

derived program identifies IP packets encapsulated in several possible ways (e.g., an

IPv4 packet tunnelled within another IPv6 packet). It should be noted that the higher

number of instructions generated by the compiler does not correspond to the number of

instructions effectively executed in the “fast path” of the code (i.e. the typical number of

instructions executed at runtime on common packet traces), however as will be shown

in the next Section, the capability of recognizing complex encapsulations comes at a

cost in terms of performances, because all the possible cases must be taken into account.

Table 4. Number of Statements Generated by Different Compilers.

 Filter1 Filter2 Filter3 Filter4 Filter5

BPF 4 6 6 17 9

NetIL(reduced db) 10 14 23 76 26

NetIL (complete db) 292 491 487 1544 497

Currently, the NetPFL compiler is not optimized for speed in code generation. For

instance, the libpcap compiler needs about 120µs to compile the “tcp.dport ==

80” filter, against 87ms of the NetPFL. Although this value is still reasonable, this

A.1.1. The pipeline

109

result is mostly due to the very different number of statements generated by the two

compilers before optimizations, which differs of about two orders of magnitude, as

shown in Table 4 (first and third lines). It is worth recalling that the compilation time

usually grows non-linearly with program size.

7.3. Performance Evaluation of the NetVM
Framework

This section presents some tests that demonstrate the performance of the NetVM

model and of its compiling infrastructure compared to other technologies. The tests are

based on the two frontends available for the NetVM, that are the NetPDL/NetPFL

compiler for packet filtering programs and the NetVMSnort Intrusion Detection Sensor.

7.3.1. Testing the x86 back-end

Tests on the x86 platform measure the performance of the code emitted by our

compiler compared to two other targets. The first one is the code generated by the BPF

virtual machine, which is able to generate native assembly through the WinPcap Just-In-

Time compiler. Although the WinPcap JIT compiler is very simple compared to our

compiling infrastructure, it provides a useful benchmark with a well-known and widely-

used architecture. The second target is made up of a set of native programs created in C

language and compiled with Microsoft Visual Studio, which represents the real

touchstone of our solution. The native C filters use a custom macro to speed up byte-

ordering operations, instead of using the standard ntoh() functions of the C standard

library.

A.1. Xelerated X11

110

Five packet filters4 with different complexity have been defined and their execution

time has been profiled through the RDTSC assembly instruction available on the x86

architecture. Tests were performed on a Windows-based machine, equipped with a

Pentium 4 processor, running at 3GHz with Hyper-Threading and 4GB of memory.

Results presented in Table 5 show that our compiler generates code that is faster than

that produced by the other technologies under testing. Main reasons rely on the intrinsic

properties of the NetVM model, which exports some useful information to the

compiling infrastructure, thus enabling very effective, albeit simple, optimizations (such

as compile-time constant swapping). Since the characteristics of packet-processing

applications are taken into consideration in the entire compilation process, the NetVM

compiler can perform more aggressive optimizations than its counterparts. Notably, this

is obtained with a limited set of optimizations compared to commercial compilers (such

as Microsoft Visual Studio). Additionally, results show that both the mid-level

optimizations and those implemented in the x86 back-end introduce a substantial boost

in performance (third column) compared to non-optimized code (second column).

Table 5. Filtering time on the x86 back-end (ticks)

Filter NetVM no opt NetVM opt BPF Native

1 23 7 36 8

2 26 12 39 26

3 30 15 39 13

4 52 39 76 61

5 35 21 43 34

4 Filters, according to the well-known libpcap/WinPcap syntax are “ip” (filter1), “ip src

10.1.1.1” (filter2), “ip and tcp” (filter3), “ip src 10.1.1.1 and ip dst == 10.2.2.2 and tcp src port 20

and tcp dst port 30” (filter4) and “ip src 10.4.4.4 or ip src 10.3.3.3 or ip src 10.2.2.2 or ip src

10.1.1.1” (filter5). The test packet was created so that filtering code was executed entirely before

returning to the caller.

A.1.1. The pipeline

111

The capabilities of the x86 backend have been assessed also with the NetVM Snort

IDS, fed with the same rule database described in Section 7.1, which includes a total of

1389 supported by the application. Table 6 shows the number of x86 instructions

generated from the NetIL modules by the NetVM JIT compiler, and the actual size in

memory of the target machine code.

Table 6. Number of x86 instructions and actual code size

Module Number of x86 instructions Code size (bytes)

Protocol Analyzer 163 613

Content Matching 268.667 1.130.250

Ethernet 20 104

IPv4 2.057 13.991

ICMP 2.906 16.737

UDP 1.838 13.173

TCP 2.100 14.442

Connection Tracking 261 1.271

Conn. Status Matching 2.097 14.054

Total 280.109 1.204.635

The performances of the IDS sensor have been assessed by measuring the time

needed to process a trace of 10M packets captured on a real network and by comparing

the results with those obtained running Snort under the same conditions (i.e., using the

same rule database). All the tests were performed on a Dual Xeon running at 3,4 GHz

equipped with Linux 2.6.20-15 SMP. The NetVM application was compiled Just in

Time into x86 assembly, while Snort was compiled through GCC version 4.1.2. The

A.1. Xelerated X11

112

console output of the two tools was disabled in order to reduce every additional

perturbation on the execution time that still includes the time needed for reading packets

from file. Besides, all the features not supported by the NetVM Snort IDS (e.g. flow

reassembly) were disabled in the native Snort. The tests have been repeated 12 times,

and results have been averaged excluding the best and the worst run. Results are shown

in Table 7.

Table 7. Throughput of the two applications

Application Packets/Second

NetVM IDS (with x86 JIT) 70.344
Snort (native) 97.922

Results look interesting. Performances of the IDS sensor translated into native x86

code look promising, with the presented implementation running at 70% of the speed of

the original Snort. Differences in speed are due to several factors: the IDS code that

does not implements all the performance-oriented tricks of Snort because of the

complexity of generating such this code in NetIL assembly. For instance, testing the

destination port instead of the source port first makes a big difference in performance,

and such these tricks are rather common in the original Snort. In other words, the

performance penalties measured should be ascribed mainly to the algorithms used for

analyzing packet data in the NetVM-based Snort, and refactoring the application would

lead to performances comparable to those of the native Snort.

7.3.2. Testing the Octeon back-end

The first test on the Octeon back-end shows the results obtained with the same five

filters already presented in the previous section. Due to the lack of a BPF JIT compiler

for this platform, NetVM filters are compared only to handwritten ones, the latter using

the GNU C compiler (GCC). Results (in clock ticks) are presented in Table 8. Also in this

A.1.1. The pipeline

113

case the code generated through the NetVM compiler is more efficient than that

produced by the counterpart, thanks to the set of optimizations performed before

emitting the code. In this case, the number of ticks is a good indication of the number of

instructions emitted for each filter, because the Octeon processor is based on a MIPS

pipelined architecture where most instructions are executed in exactly one clock cycle.

These numbers can be further improved (although this is left to future work) by

integrating a proper instruction reordering phase to avoid pipeline stalls.

Table 8. Filtering time on the Octeon back-end (ticks)

Filter NetVM Native

1 9 8

2 14 15

3 17 20

4 51 62

5 29 32

The NetVM Snort application has been profiled also on the Octeon platform.

Although a direct comparison with the original Snort is not possible (processing

algorithms are not exactly the same, and the original Snort does not run on the Octeon

platform because of memory limitations), the main result is that NetVMSnort compiles

and runs on the Octeon platform and is able to exploit native hardware coprocessors.

This demonstrates the possibility of mapping even a complex NetVM application on

this architecture, hence the validity of the NetVM model. Furthermore, Table 9 shows the

comparison between the time spent in coprocessors (out of the total time used by the

application to complete its job) between the x86 platform, where string-matching is

executed in software, and the Octeon platform, where string-matching is executed

through a hardware DFA engine, demonstrates that the NetVM model enables the

efficient exploitation of native hardware features on platforms in which these are

available.

A.1. Xelerated X11

114

Table 9. String matching performance on Octeon and x86

Platform Percentage of the time spent in string matching

Octeon 3.79%

x86 13.44%

7.3.3. Testing the X11 back-end

The X11 architecture presents many properties that make it predictable, allowing to

exactly determine the behaviour of a program through off-line static analysis, without

runtime benchmarking. The reason is that throughput is constant, as long as the code fits

into the instruction memory of the systolic pipeline. Therefore, if the code is proven correct,

a useful evaluation metric is the amount of instructions generated by the compiler. With a

fixed size pipeline and a given number of passes, translating a program to fewer instructions

allows more features to fit in the program with the same deterministic throughput.

For evaluating the X11 backend, two test programs were used: (i) a module of the

NetVM Snort IDS, which performs L2-3-4 packet inspection and saves data for

subsequent modules, and (ii) a simple packet filter that demultiplexes and counts TCP

packets directed to port 80. Although these applications are small, we claim that the

operations they perform are rather common in packet processing programs and stress

several NetVM capabilities, using coprocessors and several kinds of memory.

Since there are currently no other optimizing compilers for the X11, it is hard to the get

the baseline results needed to evaluate the performance of the NetVM compiler. To get

relevant results the source programs were first translated with all optimizations turned off.

A second compilation was performed on the same source files, with all the automatic

optimizations enabled. Afterwards the code, as already optimized by the compiler, was

further processed by hand to apply a wider range of transformations, using standard

optimization guidelines used by Xelerated. The same procedure was repeated keeping the

A.1.1. The pipeline

115

VLIW merging algorithm disabled in order to better appreciate its impact on the resulting

code size.

Results are shown in Figure 36: the ones related to the IDS module are on the left

(Figure 36a), while the ones related to the filter application are on the right (Figure 36b).

Both the total number of instructions are shown, as well as the number of resulting

VLIWs after instruction merging. As it can be seen, the number of instructions for the

Snort application is 86/76 for the automated and hand-written cases respectively, while

the corresponding numbers for the filter application is 23/19. After instruction merging,

the results were 68/48 for the Snort module and 22/17 for the filtering.

86

76

111

68

48

111

0

20

40

60

80

100

120

No optimizations Automatic optimizations Manual optimizations

Total instructions

Resulting VLIWs

23
19

62

22
17

62

0

10

20

30

40

50

60

70

No optimizations Automatic optimizations Manual optimizations

Total instructions

Resulting VLIWs

(a) IDS Module (b) TCP Filter
Figure 36. Code size for the test programs

Current results are encouraging: even with a prototype compiler and small

applications, the instruction count obtained with the compiler is within 20% of the size

of hand-optimized code before VLIW merging. Moreover, this was obtained by a proof-

of-concept code that often used simple algorithms to speed up the implementation. We

believe production-quality code can push this result even more. The differences between

manual and automatic optimizations can be mainly ascribed to the simple VLIW

merging algorithm employed, that does not perform instruction reordering, and to some

missed copy folding opportunities. Both these issues can be addressed with standard

techniques described in literature that do not require a redesign of the compiler

framework to be implemented.

A.1. Xelerated X11

116

8. Conclusions

This work analyzes the possibility to introduce some degree of flexibility in the

design and development of high-speed packet processing applications, like those that

must be executed in network nodes subjected to elevated traffic rates and where runtime

performances play a key factor.

The very general term “flexibility” has been considered in two specific contexts, i.e.

(i) as the possibility to enhance the portability of packet processing programs for

enabling the reuse of sofware solutions across heterogeneous processing architectures,

while still ensuring the fulfillment of stringent performance requirements, and (ii) as the

possibility to seamlessly integrate support to novel protocols and functionalities in

packet processing applications, thus enabling the development of efficient and protocol-

agnostic programs.

The former point has been addressed by refining the concept of Network Virtual

Machine, i.e. a programming model based on an abstraction layer for the development

of platform independent packet processing programs, which completely hides the

characteristics of the hardware to the programmer, thus enabling source code portability

A.1.1. The pipeline

117

across a set of heterogenous architectures. A major contribution of this work relies on

the demonstration of the fact that the use of a common abstraction layer, if well

designed, instead of introducing a lack of runtime performances, enables the

deployment of special purpose mapping techniques that concurrent and general purpose

programming models do not allow, thus leading to programs that are both portable and

efficient at the same time. This is possible by capturing in the programming model the

characteristics of the peculiar application domain, allowing the programmer and a

backend compiler to better share the knowledge on the actual semantics of the program,

with the result of enabling the application of more aggressive optimization techniques.

On the other hand, the problem of decoupling the logic of packet processing

applications from the knowledge of the format of network protocols in an efficient way

has been addressed by leveraging the features of a language for the description of

network protocols (NetPDL) and a language for the specification of packet filtering and

field extraction programs (NetPFL). Using these components it is possible to create

protocol-agnostic applications, however, in order to achieve good runtime

performances, dynamic compilation techniques must be employed for the translation of

the two languages into native code.

During this thesis the proposed technologies have been implemented and validated.

In particular, a framework composed of a portable runtime environment and a compiler

infrastructure, capable of JIT and AOT compilation, have been implemented. The

framework allows to seamlessly port NetVM applications on three extremely

heterogeneous architectures (i.e. the Intel x86, the Cavium Octeon and the Xelerated

X11), with performances that are comparable and sometimes better than those obtained

with alternative state-of-the-art compilers. This demonstrates the assumption that

portability and efficiency can be achieved altogether, when domain-specific

characteristics are adequately captured in the programming model.

A.1. Xelerated X11

118

The capability of the NetVM model to support the development of complex

applications has been demonstrated by implementing a complete network intrusion

detection sensor, which performs packet processing at all networking layers, leading to

results almost comparable to those obtained by an equivalent application (Snort)

running natively.

The possibility to efficiently decouple the logic of packet processing programs from

the knowledge of the format of network protocols has been demonstrated by

implementing a compiler for the NetPDL and NetPFL languages, which is capable of

generating packet filtering programs to be executed by the NetVM runtime

environment. Results show that in some cases the generated code is completely

equivalent to the one generated by alternative solutions like the libpcap compiler for the

BPF, which is based on hardcoded protocol descriptions. Moreover, thanks to the

effectiveness of the NetVM compiler infrastructure, the runtime performances of packet

filters generated from NetPDL/NetPFL can outperform those of equivalent hand-written

programs compiled with state-of-the-art compilers.

Regarding the NetVM programming model, future work will be devoted to the

investigation of the possibility to automatically partition packet processing applications

on symmetric multi-core architectures, as well as to the analysis of problems related to

the introduction of safety enforcing capabilities in the NetVM runtime environment.

The work related to the dynamic generation of packet processing programs from

external protocol descriptions will be directed towards the analysis of techniques for

minimizing the number of redundant checks in packet filters obtained by the boolean

composition of basic filters (i.e. those based on conditions on fields of a single

protocol), by leveraging the information provided by the presence of an “encapsulation

graph” (see Section 6.2.1). Besides, constructs for correctly handling the presence of

tunneling loops in packet headers are being included in NetPFL.

119

A. Network Processor Architectures

A.1. Xelerated X11

The X11 processor is a systolic processor. In medicine the term ’systole’ is used to

refer to the rhythmical contraction of the heart, which sends blood throughout the whole

body by pulsing. A parallelism can be drawn to computing systems where many

processing units are linked together with hardwired interconnections and synchronized

so that new data can be periodically sent into - and results can be extracted from the

system, and a steady flow of data is sustained. Such architectures can be very regular

and might be more easy to implement with VLSI technology.

A.1.1 The pipeline

The X11 is made of units called PISC (Packet Instruction Set Computers) which are

connected to each other in a very long pipeline. Data enters the pipeline at the first PISC

unit and exits the pipeline at the last PISC unit. Every cycle data is moved from a PISC

A.1. Xelerated X11

120

to the following one and every PISC performs an instruction on the data that has

currently available, until the end of the pipeline is reached.

The PISC pipeline is augmented with Engine Access Points. These devices are

interleaved between PISC blocks and serve as the access to external engines, which can

be used to offload part of the computational complexity off the PISC pipeline. Figure 37

shows a pipeline segment.

Figure 37. Detail of the X11 pipeline, showing 3 PISCs and an EAP. Courtesy of Xelerated AB. Excerpt from

[58].

The entire pipeline is completely synchronous. There can be no stalls and no data can

go lost in the PISCs and, under nominal operating conditions, in the EAPs. Packets

enter the pipeline by the RX Arbiter, a device which feeds the first EAP (which, in turn,

feeds the first PISC). Conversely, packets exit the pipeline by the TX Selector, which is

fed by the last PISC in the pipeline. Since the whole machine is synchronous, the

maximum rate of packets entering the pipeline is tightly related to the frequency of

machine cycles, and (if no packets are dropped by the programmer) is equal to the rate

of packets exiting the pipeline as well. There are a few consideration to make about the

X11 processor that stem from the pipeline organization of the PISCs and the systolic

architecture:

A.1.1. The pipeline

121

the amount of time required for processing every single packet is well-defined and

known a-priori;

there is a strict instruction budget limit that affects programs written for the X11.

The first point derives from the fact that every packet follows exactly the same steps

along the same physical units along the pipeline. No ’shortcuts’ can be taken to jump to

a later stage: if the particular program execution for a given packets happens to use less

instructions than the number of PISCs, we must wait for data to reach the end of the

pipeline before the packet can be emitted. There can also be no waits of undetermined

length in the pipeline, because every unit is able to complete its work within a single

machine cycle. As a first approximation, no internal buffering is needed, or possible.

The second point is a consequence of the finite length of the pipeline: once a packet has

reached the end of it, processing is forced to terminate as there are no other execution

units available. It is therefore impossible to execute a program that might require more

instructions than the number of PISC processors in the pipeline. In order to let the

programmer write longer, more complex programs than a single pass in the pipeline

would allow, a loopback path is provided so that packets exiting the pipeline can reenter

it for further processing. To preserve packet ordering, the number of pipeline passes is

equal for every packet and is statically configured at compile time. If any quantity of the

packets requires two or more pipeline passes for processing, every packet is bound to

follow the same path and loop the same number of times. The maximum amount of

iterations in the pipeline is fixed, and so it is the maximum possible execution time for

any program. Using too many pipeline passes is undesirable. The number of loop

interfaces is limited so they must be used sparingly and adding pipeline passes increases

the processing latency. Finally, there is an upper limit on the number of pipeline passes

given by the clock frequency of the X11 NP (which obviously cannot be scaled

arbitrarily) and the packet rate requirement: if too many pipeline passes are required, the

A.1. Xelerated X11

122

packet insertion rate in the pipeline must be lowered. However the X11 NP is

dimensioned so that multiple passes are possible while satisfying the wire speed

requirements.

A.1.2 PISC units

PISC processors are the core of the X11 Network Processor. They are VLIW, 16- bit

processors with a packet-oriented, RISC-like instruction set. They work on a general-

purpose register file which holds operands and results. Data can be of 8-bit or 16-bit

size. 32-bit operands are not directly supported. A special purpose register file holds the

device registers, which are used to configure the pipeline and to hold other specific

information. PISCs are made of 4 different functional units:

ALU, which handles arithmetical operation;

Copy unit, which can be used to move data between the packet memory and the

register file, or different locations in the register file;

Jump unit, which is used to execute jumps (conditional and unconditional);

Load offset unit, which purpose is to load the available offset registers.

All the ALU operations must be performed over either 8 or 16 bits at a time. 32-bit

operations can be implemented with multiple 16-bit instructions. On the contrary, the

copy unit is able to move up to 32 bits at a time with a single instruction. The PISCs

operate on very long instruction words (VLIWs) composed of four opcodes, one for

every functional unit. At most one VLIW is executed in each PISC every machine

cycle, as instructed by the RIP (Row Instruction Pointer) register in the device register

file. There are no instructions that take multiple machine cycles to complete. In case a

functional unit is not needed, its opcode in the VLIW instruction can be set to a no-

operation. Every PISC has a private amount of code memory that holds multiple

instructions. If we consider the whole PISC pipeline, the PISC instruction memory form

A.1.2. PISC units

123

a rectangular matrix. Every PISC has associated a single column of memory, and the

active row is specified by the RIP register. Linear code sequences are usually laid out

along rows, so that consecutive PISCs execute one instruction of the sequence each.

After the instruction for the current cycle is finished executing the data the PISC is

working on is forwarded to the following stage of the pipeline and new data is received

by the previous one, according to the systolic nature of the X11 NP. The systolic

structure of the architecture makes it so that data must be forwarded in every machine

cycle. This makes it impossible for a packet to "go back" to a previous PISC or to a

processor that is not the immediate successor of the current one. Under this light it is

important to understand what jumps mean on the X11 NP: the value of the RIP is

modified so that the next PISC will execute an instruction that lies on a memory row

different from the current one, but in no way the data flow between the pipeline

elements can be altered. The code must be laid out in memory accordingly. The

execution of any instruction in a specific PISC processor is inhibited if the Focus bit,

held in one of the device registers, is set. In that case the PISC processor acts like a

pass-through device for all the data it receives, forwarding them to the next stage with

the correct timing. There are programmatic ways to set and reset the Focus bit. In the

pipeline sequences of PISCs are interleaved with EAPs. Each group of consecutive

PISCs between two EAPs (or between an EAP and the end of the pipeline) is called a

PISC block.

A.2. Cavium Octeon CN38XX

The Octeon CNX3800 is a Network Service Processor (NP) targeted at network and

network security applications. Like most NPs it integrates many processing units to

exploit packet processing application parallelism. It can have from two to sixteen

A.2. Cavium Octeon CN38XX

124

processing cores cnMIPS, which are a simple, high-performance, dual-issue 5

implementation of the MIPS64®integer version 2 instruction set [59].

Figure 38. Architecture of the Cavium Octeon Network Processor

Figure 38 shows a block representation of the chip architecture. The left part (the

cores, the coherent memory bus CMB, the level-2 cache and the DRAM controller)

implements an on-chip multiprocessor and a coherent memory system. The right part

contains the I/O bus and interfaces together with configurable I/O and processing

5A dual-issue processor is able to process and execute two instruction for each clock

cycle

A.2.1. Overall workings

125

hardware units. This part helps the cores in handling packets arrival, queuing,

dispatching and forwarding, besides of hardware implementation of many packet

processing function (checksum, cryptography, etc.).

A.2.1 Overall workings

Before going through a deep analysis of the most important components of the chip,

let’s have a look to the path of a packet flowing into the system. In this way we will

briefly introduce every component with his function and have a first understanding of

the system internal workings and possibilities. There are many different algorithms for

efficient searching. Packets arrive via any of the RGMII, SPI-4.2, PCI or PCI-x

interfaces. The Packet Input Processing Units (PIP) has the task of storing packet data

in on chip buffers or in DRAM together with information needed by software like the

input port. This unit can also parse layer-two/IP packets for error condition and perform

TCP/UDP checksum.

Upon arrival, packets are transformed in working units to dispatch to cores. For

every packet a new work is created and queued in the Packet Order Work unit (POW).

The works’ queue is the primary on-chip communication and synchronization

mechanism. cnMIPS cores can become aware of works waiting for elaboration either

with interrupt or polling and can request a work at any time. Both cores and hardware

units can submit works to POW which then schedules them for the cores. So software

receives packets by obtaining the associated work structures. As we will see in A.2.4

both hardware and software can tag works in several ways. Tags are used to implement

synchronization and QoS mechanism.

There is a hardware unit, the Free Pool Unit (FPA), which manages pools of pointers

to available packet buffers. Hardware and software can allocate and free buffers

independently. Queues used by cores to submit command to various on chip

coprocessors are dynamically allocated memory chunks as well.

A.2. Cavium Octeon CN38XX

126

Cores receive work units and process them. When they finish their elaboration they

either submit the work again to the POW and then to another core (in this way cores can

be arranged in a pipeline fashion), or finally they can decide to send out the packet.

Packet transmission is managed by another specialized unit, the Packet Output

Processing unit (PKO).

A.2.2 cnMIPS Cores

There are up to 16 cnMIPS Cores in OCTEON CN38XX. They are a dual-issue

MIPS64® Version 2 integer instruction set implementation with also privileged

instructions. Two instructions can be fetched, decoded and issued per. All the cores

support a 5+ stage6 pipeline (see figure Figure 39) with a clock rate up to 600 MHz. They

also integrate a 32k 4-way instruction cache and a 8K 64-way data cache. They support

conditional clocking for minimal power dissipation. There is a core with special and

more privileged architecture (core 0) where the supervisor mode is implemented.

Besides the standard MIPS64® architecture some Cavium specific extensions are

implemented, like several bit manipulation instructions, unaligned memory accesses,

specific cryptographic instructions. Cores can be configured as either little or big endian.

They do not support floating point arithmetic.

Each core has its own virtual memory space, which is completely private. We will see

that there specialized mechanism which permit inter-core communication.

6We can identify five fuctional stage in the pipeline, but the last one uses more than one

clock time

A.2.3. Packet Input Processing Unit

127

It is possible to run a complete operating system on cores, as well as industry standard

C/C++ applications. Obviously core 0 with privileged instructions would be the supervisor

core in an OS scenario. It is possible to partition cores at boot in a way that some can run a

fully fledged operating system, while others can run a native networking application.

Communication between the OS and the application could be achieved by means of specific

OS drivers.

Figure 39. Octeon cnMIPS core pipeline

Cores use the Coherent Memory Bus to interface with memory and I/O. This bus also

guarantees the coherence between the data caches of all cores. On the other hand, in order

to communicate between them, the cores provide three main mechanism:

• Using works and POW work queuing units (explained in Section A.2.4)

• using shared memory regions (which requires software to handle locking)

• using interrupts to signal other cores when shared variables change

A.2.3 Packet Input Processing Unit

The Packet Input Processing Unit (PIP) receives packets from all the RGMII, SPI4.2, or

PCI interfaces treating all the ports the same way. It can manage up to 36 input ports at the

A.2. Cavium Octeon CN38XX

128

same time. When a packet arrives, the PIP allocates and writes packet data into buffers in a

format convenient to higher-layer software. The unit supports a programmable buffer size

and can distribute packet data across different buffers to support large packet input sizes.

This unit also creates a work for the packet. The work contains a pointer to the buffered

packet, packet error checks, and hardware parsing results (see A.2.4 for a deeper

explanation of work structures). In fact the PIP unit can perform three kinds of automatic

header parsing:

• uninterpreted parsing is skipped

• skip-to-L2 parses various Ethernet-like L2 header and can determine whether

IP is present in the packet

• skip-to-IP directly parse the contained IP packet

Normally the PIP unit writes packets in the L2/DRAM storing a pointer to the buffer in

the work structure, but if the packet is smaller than 128bytes it is completely written into the

work, hopefully in an on-chip buffer. The PIP units can be configured to write other useful

values in the work structure:

• a QoS value, which gives packets different priorities and queues

• a Group value which decides to which cores the respective work will be

scheduled. In fact cores can subscribe to different groups. The group value can be

calculated from the input port or from the protocol, using hardware parsing data. This

value can also be calculated from IP and TCP header field in order to give the same

value to packets belonging to the same TCP-flow

• a Tag value, which can change the scheduling order of packets.

After writing all work fields PIP unit passes the work to the POW unit.

A.2.4 Packet Order Work Unit

A.2.5. Free Pool Unit

129

The Packet Order Work Unit (POW) is a coprocessor providing important

synchronization functions. A work is described by an associated work queue entry and may

be created by hardware or core software. The OCTEON centralized packet input unit

creates a work upon every packet arrival. The POW unit queues the work entries

implementing eight input work queues. The POW can be configured to treat each queue in a

different way, thus implementing different service levels.

Cores request work from POW. This unit selects the work for the core and return a

pointer to the work-queue entry. All work is not equal, in fact the POW supports 16

different groups. Each piece of work is associated with a group. Each core has a

configuration variable which select which groups can be submitted by the POW to that core.

In this way it’s possible assign different functions to different cores: for example packet

processing may be pipelined from one group of cores to another group of cores performing

to different stage of the processing. This is a very flexible and configurable system which

enables programmers to better exploit the processor parallelism.

An other important field useful to order and synchronize related works is the tag field.

There are three different tag types:

• ORDERED that guarantees ordering of works with this tag type

• ATOMIC that guarantees ordering and atomicity, so that two pieces of work

with this tag type cannot be scheduled at the same time

• NULL that does not guarantee ordering

Core software can change the tag value via a tag switch transaction.

Typically a piece of work is scheduled to a core when core software executes a

GET_WORK transaction to request a new work. The elaborations of works is sequential: no

work can be scheduled to a core which is executing unscheduled work or is already

elaborating some work.

A.2.5 Free Pool Unit

A.2. Cavium Octeon CN38XX

130

The Free Pool Unit (FPA) maintains eight pools of pointers to free L2/DRAM memory.

The FPA hardware implements a data structure that approximates a logical LIFO for each

free pointer pool. Both core software and hardware units use these pool. When a pool is too

large to fit in-unit store the FPA creates a tree structure in DRAM using freed memory in

the pool to store extra-pointer. Pool 0 is a special pool, since PIP stores packet data.

Moreover PIP allocates work queue entries from a programmable pool. When one of these

two pools becomes empty PIP cannot receives packets.

A.2.6 Packet Output Processing Unit

The Packet Output Processing Unit (PKO) gathers packets from L2/DRAM and sends

them out on the RGMII, SPI4.2, or PCI interfaces. It can have up to 36 ports for sending

packets to all destinations. The PKO unit supports up to 128 queues to buffer the packets to

be sent out to the 36 available hardware ports. Each port can have a variable number of

queues (up to 8) attached to it.

The system actually queues commands in these buffers instead of only packet data. In

fact each packet transfer is a command. PKO performs a priority arbitration among the

queues to decide which command is to be executed first.

PKO unit has also a specialized hardware to calculate the L4 checksum. In this case

PKO can buffer the entire packet in its internal store. The PKO hardware only reads packet

data from L2/DRAM once to send out a packet, unless it has to calculate the checksum for a

TCP/UDP packet that is too large to fit in the internal buffering for a port (which can

contain up to 1,5 KB). The unit can also recreate a complete packet from multiple segments

stored in L2/DRAM, freeing the buffers of FPA containing the segments. All of these

optional operations are specified in the command data submitted to the unit by the cores.

The PKO unit uses a priority algorithm that allows a configurable number of queues to

be statically designated as high priority. When present, these priority queues must be the

A.2.7. Deterministic Finite Automata Unit

131

lowest-index queues attached to the port. The lower the queue index, the higher the priority

of the queue.

A.2.7 Deterministic Finite Automata Unit

The Deterministic Finite Automata Unit (DFA) is a coprocessor used to traverse

graphs in memory. It can be exploited to implement fast hardware pattern matching

algorithms.

A DFA is a state machine that receives as input a byte value (the DFA alphabet is

made of the 256 possible values of 8-bit) which causes the transition from one state to

the next. The states and the transition function can be represented by a graph, where

each graph node is a state and different graph arcs represent state transitions for

different input bytes. In the Octeon implementation each node in the graph is a simple

array of 256 Next Node Pointers , one for each unique input byte value. Each

Next Node Pointer contains a Next Node ID , which directly specifies the next

node/state for the input byte, and a tag that can hold three values:

• normal nothing special for this node, continue traversing the graph

• marked the transition should be marked for later analysis by software. This is

reported in the result.

terminal the next node is a terminal node and the graph traversal should stop

As shown in Figure 40, the DFA unit has three main components: the low-latency

DRAM controller, 16 DFA thread engines (DTEs) and the instruction-input logic, which

includes the instruction queue.

A.2. Cavium Octeon CN38XX

132

Figure 40. Architecture of the DFA Unit

The Octeon SDK contains specific tools which create the graph image to load in the

low-latency memory (LLM) from the regular expressions. The user can load as many

graphs as he likes, having the memory size as a limit. The LLM is is an external memory

with an interface with a data rate equal to the core clock rate. The LLM DRAM controller

can submit many operations to the memory at the same time and can also handle bank

replication automatically in order to encrease data rates.

DTEs are independent coprocessors that can traverse graphs. When a core needs the

DFA services, it must submit a command to the DFA instructions queue. The command

contains the pointer to the graph we want to use, and a pointer to the data we are going

to scan. When one of the DTEs is free, it fetches a pending command from the queue

and starts walking the graph loading the packet data indenpendently from the DRAM. It

also writes the scanning results back in DRAM as well.

133

Bibliography

[1] Ahmed A. Jerraya, "Long Term Trends for Embedded System Design," Digital

Systems Design, Euromicro Symposium on, vol. 0, no. 0, pp. 20-26, Euromicro

Symposium on Digital System Design (DSD'04), 2004.

[2] Intel. Internet Xchange Architecture network processors. http://www.intel.com

[3] Cavium Networks. Octeon network processors. http://www.caviumnetworks.com

[4] Xelerated. Xelerator X11 network processor. http://www.xelerated.com

[5] Bay Microsystems. Chesapeake network processor. http://www.baymicrosystems.com

[6] M. Baldi and F. Risso. Towards effective portability of packet handling applications

across heterogeneous hardware platforms. In IWAN 2005: Proceedings of the 7th

Annual International Working Conference on Active and Programmable Networks,

Sophia Antipolis, France, November 2005.

[7] M. Baldi and F. Risso. A framework for rapid development and portable execution of

packet-handling applications. In ISSPIT 2005: Proceedings of the 5th IEEE

International Symposium on Signal Processing and Information Technology, Athens,

Greece, December 2005.

Bibliography

134

[8] Lindholm, T. and Yellin, F. 1999 “Java Virtual Machine Specification. 2nd. Ed.”

Addison-Wesley Longman Publishing Co., Inc.

[9] Miller, J. S. and Ragsdale, S. 2003 “The Common Language Infrastructure Annotated

Standard.” Addison-Wesley Longman Publishing Co., Inc.

[10] R. Morris, E. Kohler, J. Jannotti and M. F. Kaashoek, “The Click modular router,” in

Proceedings of the 1999 Symposium on Operating Systems Principles. December

1999.

[11] N. Shah, W. Plishker, K. Keutzer, “NP-Click: A Programming Model for the Intel

IXP1200,” 2nd Workshop on Network Processors (NP-2), 9th International

Symposium on High Performance Computer Architectures (HPCA), Feb 2003.

[12] G. Memik and W. H. Mangione-Smith. NEPAL: A framework for efficiently

structuring applications for network processors. In Proc. of Network Processor

Workshop in conjunction with Ninth International Symposium on High Performance

Computer Architecture (HPCA-9), Feb. 2003.

[13] Glen Myers, “Overview of IP Fabrics’ PPL Language and Virtual Machine,” White

Paper, Online: http://www.ipfabrics.com/pdf/Overview_of_PPL_and_VM.pdf

[14] J. Wagner and R. Leupers. C compiler design for an industrial network processor. In

LCTES ’01: Proceedings of the ACM SIGPLAN workshop on Languages, compilers

and tools for embedded systems, pages 155–164, New York, NY, USA, 2001

[15] R. Ennals, R. Sharp, and A. Mycroft. Task Partitioning for Multi-core Network

Processors. In Compiler Construction, volume 3443/2005 of Lecture Notes in

Computer Science, pages 76–90. Springer Berlin/Heidelberg, March 2005.

[16] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju. Shangri-la:

achieving high performance from compiled network applications while enabling ease

of programming. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, pages 224–236, New York, NY,

USA, 2005. ACM.

Bibliography

135

[17] Turner, R. 2007. Understanding Programming Languages. Minds Mach. 17, 2 (Jul.

2007), 203-216

[18] Plezbert, M. P. and Cytron, R. K. 1997. Does “just in time” = “better late than never?”.

In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Paris, France, January 15 - 17, 1997). POPL '97

[19] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeugIl Lee, Jinpyo

Park, Yoo C. Chung, Suhyun Kim – “LaTTe: A Java VM Just-in-Time Compiler with

Fast and Efficient Register Allocation”

[20] Andreas Krall – “Efficient Java VM Just-in-Time Compilation”, in Proceedings of

PACT’98, 12-18 october 1998

[21] Andreas Krall, Reinhard Grafl – “CACAO – A 64 bit Java VM Just-in-Time

Compiler”, in Proceedings of the ACM PPoPP’97 Workshop on Java for Science and

Engineering Computation.

[22] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, James

M. Stichnoth – “Fast, Effective Code Generation in a Just-In-Time Java Compiler” In

Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language

Design and Implementation, Vol. 33, No. 6, 1998

[23] Gupta, R., Pande, S., Psarris, K., and Sarkar, V. 1999. Compilation techniques for

parallel systems. Parallel Comput. 25, 13-14 (Dec. 1999)

[24] Lee, E. A. 2006. The Problem with Threads. Computer 39, 5 (May. 2006), 33-42

[25] O. Morandi, F. Risso, M. Baldi, and A. Baldini. Enabling flexible packet filtering

through dynamic code generation. In ICC 2008: Proceedings of the IEEE International

Conference on Communications, Beijing, China, May 2008

[26] O. Morandi, F. Risso, G. G. Moscardi. An Intrusion Detection Sensor for the NetVM

Virtual Processor. In Proceedings of the The International Conference on Information

Networking 2009 (ICOIN 2009) , Chiang Mai, Thailand, January 2009

Bibliography

136

[27] Johnson, E. J. and Kunze, A. 2002 Ixp-1200 Programming. Intel Press.

[28] F. Risso, M. Baldi, NetPDL: An Extensible XML-based Language for Packet Header

Description, Computer Networks (COMNET), Vol. 50, No. 5, Elsevier, pp. 688-706,

2006.

[29] Computer Networks Group (NetGroup) at Politecnico di Torino, “The NetBee

Library,” August 2004. Available at http://www.nbee.org/.

[30] Computer Networks Group (NetGroup) at Politecnico di Torino, “Analyzer 3.0,”

March 2003. Available at http://analyzer.polito.it/.

[31] F. Risso, “NetPDL language specification,” February 2007. Available at

http//www.nbee.org/netpdl/.

[32] Computer Networks Group, “NetPFL language specification,” August 2008. Available

at http://www.nbee.org/doku.php?id=netpfl:index

[33] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently

computing static single assignment form and the control dependence graph. ACM

Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[34] S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1997.

[35] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and S. W. Reeves.

Fast copy coalescing and live-range identification. In PLDI ’02: Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language design and

implementation, pages 25–32, New York, NY, USA, 2002.

[36] C. W. Fraser, R. R. Henry, and T. A. Proebsting. Burg: fast optimal instruction

selection and tree parsing. SIGPLAN Not., 27(4):68–76, 1992.

[37] L. George and A. W. Appel. Iterated register coalescing. ACM Trans. Program. Lang.

Syst., 18(3):300–324, 1996.

[38] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register

allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994.

Bibliography

137

[39] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and I.

Nahshon. Spill code minimization techniques for optimizing compliers. In PLDI ’89:

Proceedings of the ACM SIGPLAN 1989 Conference on Programming language

design and implementation, pages 258–263, New York, NY, USA, 1989. ACM

[40] Intel Corporation , 2008, Intel® 64 and IA-32 Architectures Software Developer's

Manual Volume 1: Basic Architecture

[41] A. Korobeynikov. Improving switch lowering for the llvm compiler system. In

SYRCoSE 2007: Proceedings of the 2007 Spring Young Researchers Colloquium on

Software Engineering, Moscow, Russia, May 2007.

[42] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975.

[43] J. Carlstrom and T. Boden, Synchronous dataflow architecture for network processors,

IEEE Micro, vol. 24, no. 5, pp. 10–18, 2004.

[44] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[45] J. A. Fisher, “Trace scheduling: a technique for global microcode compaction,” IEEE

Transactions on Computers, vol. 30, no. 7, pp. 478–490, July 1981.

[46] M Roesch, Snort - Lightweight Intrusion Detection for Networks, in Proceedings of

the 13th Systems Administration Conference (LISA '99), Seattle, WA, November 1999,

pages 229-238.

[47] Y. Charitakis, D. Pnevmatikatos, E. P. Markatos, and K. G. Anagnostakis, “Code

generation for packet header intrusion analysis on the IXP1200 network processor,” in

Proceedings of the 7th International Workshop on Software and Compilers for

Embedded Systems (SCOPES 2003), September 2003.

Bibliography

138

[48] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching using FPGAs”, In

Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM01), April 2001.

[49] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood, “Deep packet

inspection using parallel Bloom filters,” in Hot Interconnects, (Stanford, CA), pp. 44-

51, August 2003.

[50] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. “Deterministic

memory efficient string matching algorithms for intrusion detection”. In Proceedings

of IEEE Infocom 200, pages 333-340.

[51] S. Dharmapurikar, and J. Lockwood, “Fast and scalable pattern matching for content

filtering”, In Proceedings of ANCS 2005, Princeton, NJ, USA, October 26 - 28, 2005.

[52] F. Yu, Z.. Chen, Y. Diao, T. V. Lakshman, and R. H .Katz, “Fast and memory-efficient

regular expression matching for deep packet inspection”, In Proceedings of the ANCS

2006, San Jose, California, USA, December 03 - 05, 2006.

[53] Y. H. Cho, and W. H. Mangione-Smith, “A pattern matching coprocessor for network

security”, In Proceedings of the 42nd Annual Conference on Design Automation (DAC

05). San Diego, California, USA, June 2005.

[54] R. T. Liu, N. F. Huang, C. N. Kao; C. H. Chen, C. C. Chou, “A fast pattern-match

engine for network processor-based network intrusion detection system”, in

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC 2004), Volume 1, pp. 97 – 101.

[55] A. Begel, “Applying General Compiler Optimizations to a Packet Filter Generator”.

1996. Available online at

http://www.microolap.com/downloads/pssdk/literature/begel96applying.pdf

[56] R. J. Clark, M. H. Ammar, and K. L. Calvert. “Multi-protocol architectures as a

paradigm for achieving inter-operability,” In Proceedings of IEEE INFOCOM, April

1993, pp. 136-143.

Bibliography

139

[57] A. Begel, S. McCanne, and S. L. Graham, “BPF+: exploiting global data-flow

optimization in a generalized packet filter architecture,” In Proceedings of the

Conference on Applications, Technologies, Architectures, and Protocols For

Computer Communication, SIGCOMM '99, September 1999, pp. 123-134.

[58] Gary Lidington. Programming a data flow processor. Available Online at

http://www.xelerated.com/uploads/files/54.PDF, September 2003

[59] MIPS Technologies Inc., 2005. Mips64® architecture for programmers volume I:

Introduction to the Mips32® architecture. Available online at

http://www.mips.com/products/resource-library/product-materials/mips-architecture/

