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1. Introduction 

During last years we have assisted to an exponential growth of the Internet, both in 

the number of connected users and in the variety of services made available by an 

always increasing number of subjects. Indeed, the Internet is day-by-day more pervasive 

in our lives and we are gradually transferring to this “virtual world” many tasks and 

activities that until a few years ago were mostly peculiar to other domains.  

On one side, we have seen the explosion of the World Wide Web and its shift from a 

one-to-many to a many-to-many paradigm, leading to the rise of successful phenomena 

like weblogs and social networks. This is coupled with another parading shift,  in which 

the web is seen as a distributed platform providing what are called “web-services”. On 

the other side, we have seen the rise of several new possibilities for communicating, 

sharing and exchanging informations, and it is nowadays common to use Voice over IP 

(VoIP) services, P2P file-sharing, Internet radios and TVs, online applications (e.g. 

Google Docs). The network is increasingly used as a transport layer that allows 

distributing and exchanging complex and semantically-rich information. 

In such scenario, Network Operators face several challenges, because they need to 

provide users with appropriate Qality of Service (QoS) and deploy adequate security 
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policies, while  traffic loads on edge and core networks are increasing, and network 

procols are evolving in order to support newborn services.  This pushes for the need of 

some degree of flexibility also in  high-speed networking devices, like switches, routers 

and firewalls. So the Networking Industry must cope with extremely diverging 

requirements: on one hand, networking equipments must be able to keep up with line 

rates that are rising in the order of tens of gigabit per second, while, on the other hand, 

there is the need to shorten up the development cycle, in order to support novel 

protocols and advanced functionalities within shorter delays. In particular, this second 

point is being pushed to the limit of giving customers the ability to independently 

implement new functionalities, for example adding support to custom and proprietary 

protocols. As a direct consequence, the design of network devices can no longer rely on 

completely hardware-based solutions - usually employing Application Specific 

Integrated Circuits (ASICs) - for achieving high-throughput perfomances, because of 

the need of providing some degree of flexibility and programmability. 

The need of accomodating both flexibility and performance requirements is common 

in many fields related to the design of embedded systems [1], and a widely adopted 

solution is to integrate several, possibly heterogeneous, processor cores on a single chip, 

along with specialized hardware coprocessors, in  order to build what is called a System 

on a Chip (SoC). In particular, during the last ten years, chip vendors have been 

proposing several commercial Application Specific Instruction Processors (ASIPs) 

targeted to high-throughput packet processing, which are commonly known as Network 

Processors, or Network Processing Units (NPUs).  

NPUs are specially designed and optimized for  packet processing operations and, in 

order to achieve high througput performances, they usually provide from tens to 

hudreds of concurrent processing elements, which enable the exploitation of the 

intrinsic parallelism found in packet processing applications.  
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However, the expected advantages of using Network Processors for designing 

today’s network devices, come at some costs in terms of ease of development of 

software applications. In particular, difficulties are mainly tied to the high heterogeneity 

of available architectures, making nearly impossible the development of portable 

applications. In fact, a program written and optimized for a specific NPU cannot be 

retargeted to work on a different hardware platform, because, unlike for general purpose 

processors that expose a coherent programming model, network processors generally 

expose a variety of heterogeneous low-level programming models, spanning variably 

from shared-memory multi-processing models to pipelining and message passing ones. 

Moreover, there is the lack of a standard high level programming language for these 

processors, as often vendors provide a software development kit, which uses a C-like 

language with extensions that are peculiar to the specific hardware platform. It is also 

common to write applications directly in the native assembly language of a given 

network processor. 

The depicted scenario highlights the need for novel solutions capable of increasing 

the reuse of software components and to shorten the development cycle in the design of 

complex packet processing applications, while still ensuring the fulfillment of 

perfomance constraints. The aim of this work is to respond to such defy, by taking into 

account two main aspects of the problem: (i) the need of enhancing the portability of 

software solutions, achieving a looser coupling between packet processing programs 

and the specific hardware platforms where they will be executed, and (ii ) the need of 

being able to adequately follow the evolution of network protocols, by allowing 

applications to seamlessly incorporate the support to emerging ones without the 

additional costs related to stepping into a new development cycle (i.e. program 

refactoring, quality assurance, release). 



1. Introduction 

4 

 

 

The former point is addressed by investigating the opportunity of capturing the 

intrinsic characteristics of packet processing applications into a novel programming 

model, which is able to adequately abstract the functionalities usually provided by 

network processor architectures, while allowing platform-specific mapping choices to 

be isolated in a set of back-end modules. The latter point is addressed by investigating 

the possibility of decoupling the logic of applications from the knowledge of network 

protocols, providing the user with a set of languages and tools that allow writing 

protocol-agnostic packet processing software with performances that are comparable to 

those of hand-written programs. 

This work is structured in two main parts. In the first one, two ortogonal solutions for 

enabling flexibility in packet processing software are analyzed: in Chapter 2 the NetVM 

programming model is presented as a possible solution for creating both portable and 

efficient packet processing applications, while Chapter 3 will introduce the languages 

and the outline of an architecture for obtaining efficient protocol-agnostic applications. 

The second part aims at validating the proposed solutions. In particular, Chapter 4 will 

present the implementation of the NetVM model as a runtime environment with a multi-

target compiler infrastructure; in Chapter 5 the capability of NetVM to support the 

development of complex packet processing applications is assessed; Chapter 6 presents 

the architecture of a compiler for the dynamic generation of packet filtering programs 

based on an external protocol description database; experimental results are reported in 

Chapter 7, while in Chapter 8 conclusions are drawn and future work is outlined.
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2. Towards Portable and Efficient 
Packet Processing Applications 

2.1. Introduction 

During the last decade, the increasing requirements in terms of flexibility for the 

design of high-speed networking devices have pushed the Industry towards the 

development of network processors, i.e. programmable processors providing several 

concurrent execution units, with Instruction Set Architectures (ISAs) specifically 

targeted to packet processing, usually integrated with special purpose hardware 

coprocessors for offloading computational intensive functionalities. Even though such 

devices are not able to achieve the same throughput performances of ASIC based chips, 

they provide more flexibility thanks to their programmability.  

However, network processors have traditionally exposed several problems from the 

point of view of the ease of programming. Such problems mainly relate to the need for 

the programmer to deal with very low-level aspects of the hardware, and to the 

difficulty of manually partitioning application modules across several concurrent 
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processing engines. The tools and Software Development Kits (SDKs) provided by 

manufacturers are in most cases a partial solution, since they tend to expose the 

hardware to the programmer through an assembler language, and even when a high 

level language such as C is provided, it is generally extended with constructs that 

directly maps onto hardware features, leading to a lack of abstraction.  

Beside problems related to programmability, network processors suffer from a major 

problem given by the impossibility to reuse software solutions across different hardware 

platforms. Applications that have been developed and optimized for a specific NPU 

architecture, when needing to be ported to a different architecture, must be redesigned 

from scratch and have to follow again the entire development cycle. Indeed, network 

processor architectures proposed from different vendors are extremely heterogeneous 

between them. They span from symmetric multi-processing platforms like the Intel IXA 

family (IXP12XX, IXP24XX, IXP28XX) [2] and the  more recent Cavium Octeon [3] 

network processors, to systolic array dataflow processors like the Xelerated X11 [4] and 

the Bay Microsystems Chesapeake [5], which are capable of processing packets at 

speeds in the order of tens of gigabits per second. A survey on the characteristics of 

some of these NPU architectures can be found in Appendix 0. 

Given such high heterogeneity, the problem of defining a common programming 

model, capable of providing generality (i.e., capability to support a wide range of 

applications), portability (across a wide range of network processor architectures), 

efficiency, while still providing an adequate programming abstraction, is particularly 

difficult. As will be detailed in Section 2.2, current solutions usually provide the latter 

two features, but no solutions exist that looks at the problem in a comprehensive 

manner. In particular, the generality of the approach and portability are usually not taken 

into account, since the proposed solutions are mainly targeted to specific hardware 

architectures, or are able to accommodate a very specific class of applications.  
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Portability and efficiency are usually considered as conflicting requirements that can 

be hardly achieved altogether in a specific solution. Indeed, while the introduction of an 

abstraction layer capable of hiding the differences between different hardware platforms can 

represent the basis for enabling the creation of portable software, the achievement of 

adequate performances from the same application executed on a wide variety of 

heterogeneous architectures is extremely challenging. 

The main argument of this thesis is that, in the case of network processing software, 

portability and runtime efficiency can be achieved both at the same time. In fact, packet-

processing applications are usually very limited in scope and expose very recognizable 

structural and behavioural patterns. Such characteristics that are peculiar to the specific 

application domain can be exposed to the programmer through an adequate 

programming model, and inside the intermediate representation of a multi-target 

optimizing compiler, allowing an efficient mapping on heterogeneous architectures and 

enabling the deployment of aggressive special purpose optimizations.  

In order to support this argument, part of this thesis work has been devoted to 

refining and validating the concept of a Network Virtual Machine (NetVM) [6][7], 

previously proposed by the NetGroup from Politecnico di Torino. NetVM provides a 

mid-level abstraction layer, based on a dataflow programming model in which hardware 

is virtualized, with the result of completely hiding the target architecture to the 

programmer. In other words, NetVM aims at applying the well-known paradigm “Write 

once, run everywhere” proposed by the Sun Java Virtual Machine (JVM) [8] and the 

Microsoft Common Language Runtime (CLR) [9] to the field of network processing 

software, where performance is a key factor.  

One of the main objections to this approach is that the introduction a common 

abstraction layer, while enabling portability, would result in a substantial overhead, 

wasting the benefits of using special purpose and optimized hardware architectures. The 
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first part of this thesis will demonstrate that this claim is not necessarily true in the case 

of a virtual machine specifically designed for packet-processing applications, like the 

NetVM. In particular, the NetVM model exposes a set of key features that, besides 

making it a good target for different high-level languages, enable both portability and an 

efficient mapping on the target hardware.  

After a brief overview of the available related work, the current chapter will present 

the NetVM abstraction layer, analyzing the points that make it a good choice for 

developing portable and efficient network data-plane applications, while the following 

chapters will focus on the implementation of the model as a portable runtime 

environment and multi-target optimizing compiler. In chapter 0, experimental results  

will show that NetVM applications can be efficiently executed, without any change, on 

three different platforms such as the Intel x86 general purpose architecture, the Cavium 

Octeon [3] multi-core network processor and the Xelerated X11 [4] systolic array 

processor.  

2.2. Related Work 

In the last years, the problem of creating a suitable framework for programming network 

processors has been widely investigated from both industry and academia.  

Click [10] is a framework for implementing a modular software router, by 

interconnecting different packet processing modules called elements. Elements implement 

specific functions like packet classification, queuing, scheduling, and interfacing with 

network devices. A router configuration is built connecting elements in a directed graph, 

which represents the flow of the packets inside the router. A Click element is written in 

C++, and is a subclass of the virtual class Element. NP-Click [11] proposes a programming 

model based on the Click language for Intel IXP network processors, showing that the level 
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of abstraction introduced, while easing application development, also enables an efficient 

mapping on a special purpose architecture. 

Memik et al. [12] demonstrate the advantages of structuring applications for network 

processors in a modular way, and describe a system, called NEPAL, which is able to extract 

the modules that constitute a sequential network-processing program for mapping them on 

parallel execution units. 

PPL (Packet Processing Language) [13], defined by IP Fabrics Inc., is a declarative 

language for programming network processors of the Intel IXA family. A virtual machine 

executes PPL programs on the target platform, and is in charge of mapping high level 

constructs onto the available hardware features, enabling the transparent exploitation of 

parallel processing engines. While the details of this solution are unknown, the fact of being 

highly tied to a specific high-level language (i.e. PPL), and to a specific platform (Intel 

network processors), represents a limitation.  

Wagner et al. in [14] proposed a C compiler for an industrial network processor, 

showing that exposing low-level details in the language through compiler known 

functions allows an efficient exploitation of the available hardware features without 

relying on assembly language.  

PacLang, by Ennals et al. [15] is a framework that allows application designers to 

use a simple high-level language to partition packet processing programs in different 

concurrent tasks. The base elements of PacLang are tasks and queues. Tasks represent 

computations that can be executed concurrently, while queues can be assimilated to 

pipes, through which tasks can communicate and synchronize. The proposed system 

allows a PacLang program to be automatically partitioned on parallel execution units; 

however, its capabilities have been demonstrated only on Intel IXP network processors. 

Shangri-la [16] is a system with a more general approach. Its basic components are a 

domain-specific programming language (Baker) and a profile-guided compiler 
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infrastructure, which is able to optimize and map an application onto Intel network 

processors. While the reported performance results look promising, it is unclear if the 

compiler framework can be retargeted in order to support different architectures. 

Moreover, the solution appears to be tied to the Baker language. 

These approaches generally fail to provide a comprehensive framework for achieving at 

the same time both efficiency and portability across heterogeneous architectures. In 

particular, those that are targeted to a specific platform, focusing on performance, tend to 

expose in high-level programming languages a set of low-level primitives very close to the 

hardware, causing a lack of abstraction. For example, programming models targeted to 

multi-core based network processors may include explicit primitives for task/thread 

synchronization, while other may provide special functions for accessing coprocessors or 

that are directly mapped onto special-purpose instructions. These can be present either in 

the form of library functions and APIs, or intrinsics (i.e. compiler known functions). In such 

scenario, the model is hardly portable because it is too much tied to the target architecture 

and porting it to another platform may be too much costly if not impossible, like for 

example when needing to map thread synchronization on a systolic array processor. 

Additionally, this approach, which originates from a bottom-up vision, tends to prevent 

programmers from having an abstract vision of their application, because they are forced to 

structure the software according to the execution model supported by the hardware, e.g. by 

defining the appropriate task/thread partition and dealing with synchronization issues 

explicitly, hence preventing any possible outcome in terms of portability. 

Vice versa, the approaches that are more application-oriented usually tend to completely 

hide the details of the underlying hardware, possibly enabling software portability. 

However, they usually lack in generality since they are mostly tied to a specific class of 

applications, leading to the impossibility to effectively use the model for writing different 

kinds of applications, with the result of actually limiting the flexibility of the approach.  
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In contrast to previous solutions, the one proposed in this thesis is based on a virtual 

machine specially targeted to packet processing applications and aims at providing a 

comprehensive programming model that is able to deliver high performances on target 

architectures supporting it, while ensuring complete code portability and generality (i.e. the 

capability to support several kinds of applications) through a mid-level abstraction layer. 

This result is achieved by completely hiding the details of the hardware to the programmer 

and by capturing in the programming model the characteristics that are peculiar to the 

network-processing domain, allowing the compiler to have a more detailed view on the 

semantic of the application, thus enabling an efficient mapping. 

 

2.3. Using a Virtual Machine for Code Portability 

The concept of a virtual or abstract machine is commonly used when facing the need 

of hiding from the programmer the characteristics of the real execution units where 

programs will be actually executed. This decoupling allows the same programs to be 

executed on any system where an implementation of the abstract machine is available. 

In particular, the implementation of a virtual machine usually comprises a component 

called the Runtime Environment, which provides a mapping of the abstract components 

onto the target architecture, and a component for translating into executable code the 

instructions of the source program. The latter can be an interpreter, an ahead of time 

(AOT) compiler, or a just-in-time (JIT) compiler. Figure 1 shows these three possible 

scenarios. 

In the case depicted in Figure 1A, the source program is executed through an 

interpreter, i.e. a program that is able to decode a sequence of instructions and execute 

them by emulating their behaviour. Because of its simplicity, usually the 

implementation of scripting languages and the reference implementation of most virtual 
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machines falls in this scenario. However, such this approach is not able to provide 

adequate runtime performances, since the process of decoding source instructions and 

emulating them is very time-consuming. 

 
Figure 1. Three different implementation schemes for abstract machines 

Figure 1B shows the scheme used when runtime performances play a major role. In 

such case, the source program is translated ahead of time into a program that can be 

directly executed on the target machine, possibly exploiting functionalities provided by 

a runtime environment. The compilation process happens once, while the execution of 

the target program is delayed and can be repeated several times, e.g. with different 

inputs. This implies that the complexity of the code generation and optimization 

techniques featured by the compiler can be tuned, based on the required runtime 

performances. This scenario is common when implementing traditional high-level 

programming languages like C/C++, etc. Even though it is quite uncommon to associate 

a language like C to virtual machines, the reader should note that every computer 

language at any level of abstraction also defines an underlying abstract machine that is 

able to execute its primitives [17].  

The scheme shown in Figure 1C is the one typically employed for the 

implementation of modern programming language virtual machines such as the JVM 

and the CLR. Here, the source program is translated into native code for the target 

platform just before execution, through a just in time compiler. Indeed, in order to limit 
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the delay due to the compilation time, usually the source program is not compiled all at 

once, but only one module at a time, when needed, during execution. This schema sits 

between the former two, allowing the direct execution of source code on the target 

machine, with better runtime performances respect to the use of an interpreter. 

However, especially for general-purpose applications where the user is directly 

involved, a program compiled just in time will necessarily provide poorer performances 

respect to an equivalent program compiled with a full-featured AOT compiler. In order 

to guarantee an appropriate user experience, a JIT compiler must perform a compromise 

between the required compilation time and the quality of the generated code, which are 

two parameters tied by an inversely proportional relation: for obtaining better target 

code (e.g. providing more processing speed), the compiler should perform more 

complicated and aggressive optimizations, that in turn would increase the compilation 

time. 

For this last reason, it is common to associate the concept of a virtual machine with 

poor runtime performances, because general purpose interactive programs, either being 

interpreted, or compiled just in time, are generally slower than equivalent programs 

compiled with a full optimizing ahead of time compiler. 

If such consideration can be true for general-purpose virtual machines like the JVM 

and the CLR, it does not necessarily apply to the case of a domain specific virtual 

machine especially designed for the development and execution of packet processing 

applications. In particular, we should note that networking data-plane applications 

expose an execution pattern very different from that of typical general-purpose 

applications, minimizing, in the former case, the differences between ahead of time and 

just in time compilation. Moreover, as will be detailed in the rest of the chapter, the 

definition of an appropriate model for the abstract machine can enable the deployment 
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of special purpose optimizations, not applicable in compilers for general-purpose 

languages.  

In other words, the term “Virtual Machine” does not directly imply anything about 

runtime performances, since these are mainly tied to the peculiar characteristics of the 

abstraction it provides. In fact, the supposed slowness of Java programs on general-

purpose hardware is partially due to the features provided by the JVM abstract machine. 

In particular, Java programs are always executed in a safe sandbox, guaranteeing that no 

out of bound memory accesses will compromise the host machine. Moreover, Java uses 

implicitly a garbage collector for deleting unused objects, freeing the programmer to 

deal with manual memory allocation/deallocation. These and other features come at an 

additional cost in terms of runtime performances, especially when using just in time 

compilation, where the deployment of sophisticated optimizations is discouraged. 

2.4. JIT Compilation of Networking Data-Plane 
Applications 

As already said, in general purpose virtual machines like the JVM and the CLR, the 

use of just in time compilation responds to the need of enhancing the performances 

perceived by the user of interactive applications, however Pletzbert and Cytron [18] 

point out that in such context, the JIT compilation of Java applications does not always 

guarantees better performances than those obtained through a bytecode interpreter: 

“While the just-in-time approach avoids the penalty of interpretation, our experiments show that 

the cost of compilation can significantly interrupt the flow of execution; furthermore, in many cases, 

better performance could be obtained by interpreting the original form rather than compiling to 

native code.” 
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In particular, since JIT compilation of a program module is usually performed right 

before its execution, the main constraint that must be satisfied for JIT compiled code to 

be more efficient than interpreted code is the following: 

TInt > TJit + TExec    (1) 

where TInt is the time taken for interpreting a program module, TJit the time taken by the 

compilation process, and TExec the time spent during the execution of the resulting 

machine code. Indeed, the translation to native code always introduces a delay in the 

execution of a program module and, in order to maximize performances, both TJit and 

TExec have to be minimized. On the other hand, such parameters are not unrelated, since 

the quality of the machine code generated, and consequently its speed, highly depend 

from the quality of the compiler and from the possibility to apply aggressive (i.e. more 

costly) optimizations. A more complex JIT compiler can produce machine code that can 

run faster than the code generated by a simpler one, but if the increased complexity can 

reduce TExec, at the same time makes TJit bigger.  

In other words, engineering a just in time compiler for a general purpose virtual 

machine means searching a satisfactory compromise between compilation time and the 

quality of the generated code. In the last years, several solutions for both the JVM and 

the CLR have been proposed. Many of them try to reduce TJit sacrificing the opportunity 

of applying aggressive optimizations [19][20][21][22]. The code generated by these 

compilers is of average quality and is usually well suited for general-purpose 

applications, where time constraints are not critical. Besides, in order to reduce the 

latency of execution due to the compilation process, solutions like “continuous 

compilation” have been proposed [18]: while a program is being compiled by the JIT, 

the interpreter begins executing it, until the control of execution can be transferred to 

the generated machine code. 



2. Towards Portable and Efficient Packet Processing Applications 

18 

 

 

However, such considerations hardly could be applied in the domain of packet 

processing applications, whose only purpose is to process (possibly infinite) sequences 

of network packets, and which are by nature not interactive at all. In particular, for a 

packet-processing module, the constraint imposed by (1) takes the following form: 

 
ExecJitInt nTTnT +>   (2) 

where n is the whole number of packets processed during the life of the application.  

The same equation can be rewritten as: 

 
)( ExecIntJit TTnT −<
 

 (3) 

The result is that if the JIT compiled code performs better than the interpreted one 

and for n large enough, the constraint is always satisfied. This means that, due to the 

non-interactive nature of packet processing applications, as for any other kind of data-

intensive software, the pure cost of just-in-time compilation, for large it would be, is a 

factor that does not directly influence the perceived performances, and the only 

constraint is that the native code generated by the compiler should be faster than the 

interpreted one.  

However, the main outcome of such considerations goes over the simple comparison 

between the performances of JIT compiled versus interpreted code. Indeed, it is clear 

that the major term to be considered for the design of a Just in Time compiler for a 

packet processing virtual machine is the quality (i.e. usually measured by the speed) of 

the generated code. In other words, it is not necessary to trade compilation time for 

runtime performances, leading to a situation very close to the one of ahead of time 

compilation, which, being performed completely offline allows the deployment of 

extremely aggressive optimizations. 
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2.5. The Network Virtual Machine  

The NetVM abstraction layer [6][7] defines a dataflow programming model for data-

plane networking software, where an application is expressed as the interconnection of a 

set of independent packet processing modules called Network Processing Elements 

(NetPEs).  Indeed, a NetVM application can be viewed as a directed acyclic graph, 

whose nodes represent NetPEs, and whose edges represent connections between 

consecutive modules. NetPEs are interconnected between them through Ports.  Network 

packets are like tokens that flow through the graph from a source to a sink, while being 

processed by NetPEs. In particular, packet sources and sinks are called respectively 

input and output Sockets, which can be connected to both physical network interfaces 

and “application interfaces” that allow packets to be injected by, or sent to user-defined 

control-plane modules. 

The use of a dataflow model for expressing networking applications is not novel and 

is quite common [10][12][16]. This stems from the consideration that such kind of 

applications can be described as a collection of relatively independent tasks to be 

performed on packets; once a module has finished processing a packet, this can advance 

toward the next one, and the first is ready to accept a new packet, following a pipelining 

schema. 

Actually, the entity flowing through NetPEs is not a simple network packet, but a 

more complex structure called Exchange Buffer, which, besides the packet buffer, 

contains additional information, like a timestamp and a special memory buffer called 

the Info Memory, which consecutive NetPEs can use for exchanging data associated to 

the packet. 

Figure 2 shows an example of a generic NetVM application, viewed as a collection 

of interconnected NetPEs. 
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Figure 2. NetVM application viewed as a dataflow graph of NetPE modules 

Each NetPE exposes a user-defined number of ports, through which exchange 

buffers can be either received or sent. The ports of each NetPE can be connected to 

ports of other NetPEs or to Sockets. Both input and output ports are classified in two 

categories: push and pull. Based on the class of the two ports involved in a connection, 

the way in which exchange buffers are transferred between consecutive NetPEs varies. 

In particular, in a push connection the packet is “pushed”, i.e. sent from an upstream to 

a downstream NetPE, while in a pull connection the packet is “pulled”, i.e. requested by 

a downstream NetPE to an upstream one. 

Due to its dataflow nature, NetVM follows an event-driven paradigm, so the 

behaviour of a NetPE module is defined by specifying a set of event handlers that are 

executed when specific events happen. In particular, the NetVM model defines three 

main events that each NetPE should handle, that are (i) NetPE initialization, (ii ) the 

arrival of an exchange buffer on an input push port, and (iii ) the arrival a request to send 

an exchange buffer on an output pull port. The corresponding event handlers are named 

respectively Init, Push and Pull. In particular, the Init handler of each NetPE is triggered 

once, before starting packet processing, and allows the private state of the NetPE to be 
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initialized, while the Push and Pull event handlers express the actual tasks to be 

performed in order to process packets.   

NetPE event handlers can be programmed in a mid-level language called Network 

Intermediate Language (NetIL), which is a stack-based assembler providing an 

instruction set specifically targeted to packet-processing applications.  

The choice of making NetIL a stack-based language, in contrast to traditional 

register-based schemas, is simply dictated by the fact that the implicit presence of an 

operand stack avoids the necessity to assign explicit names to the temporary results of 

operations, leading to a more compact binary representation. Indeed, the actual 

expressivity of a stack-based language is equivalent to that of a register-based one.  

On the other side, the choice of defining a mid-level assembly language stems from 

the need of making NetVM general enough to be independent from any specific high-

level language. In fact, NetIL can be an excellent target for several high-level 

languages, ranging from declarative (e.g. rule based), to imperative ones (e.g. like C). 

More details on the characteristics of NetIL will be given in section 2.5.4 

2.5.1. NetIL Execution Model 

As for any computer language, NetIL defines its own execution model, where the 

abstract architecture of the NetPE, shown in Figure 3, plays a major role. 

A NetPE is a 32-bit stack-based processor that is able to perform integer operations 

on data stored in a set of local memories. Floating-point operations are not supported, 

because they are generally not used in packet processing applications. A local 

processing unit executes the instructions stored into the code memory, which contains 

the three NetPE event handlers (i.e. Init, Push, Pull). The starting addresses of the 

handler programs inside the code memory are available in three read-only registers, 

named respectively INA (init handler address), PSA (push handler address), and PLA 
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(pull handler address), so, once a particular event occurs, the correct program is 

executed.  

 
Figure 3. NetPE Internal Architecture 

Instructions operate on values loaded onto the operand stack, and results are pushed 

onto the stack as well. A set of local variables allows storing temporary data that is 

guaranteed to survive only until the end of the current handler being executed.  

Every NetPE can access one or more “virtual coprocessors”, for executing complex 

operations, such as lookup and regular expression matching, which are likely to be 

implemented in hardware on network processing platforms. More details on NetVM 

coprocessors will be given in Section 2.5.5. 

2.5.2. Memory Layout 

NetVM provides a rich memory model, whose structure stems from the following 

considerations on typical packet processing applications: 

The packet is the fundamental entity that is central to the whole application and 

needs to be explicitly identified 

Although different NetPEs represent relatively independent tasks to be performed on 

packets, it is frequent that a module needs to communicate to subsequent ones partial 

results, in the form of single values or structured data 
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Persistent or static state (e.g. forwarding tables, lookup tables, counters, etc.), is 

usually localized into a single module, and, provided a communication system based on 

the previous points, there is no need of shared state among different modules 

The result is a set of orthogonal memory segments that reflect the needs of the 

programmer for storing temporary or persistent state, and for communicating values 

between different modules of a packet-processing application. In particular two memory 

segments flow through modules carried inside exchange-buffers, i.e. the packet buffer 

and the info memory, while a memory that is local to each module, i.e. the data 

memory, allows storing static data that should survive across consecutive executions of 

NetPE event-handlers.  

The size of the info and data memory segments can be defined through specific 

directives in the source NetIL assembly, while the size of the packet buffer is initialized 

to the actual length of the incoming network frame, when an exchange buffer is created 

and injected into the application. The virtual machine ensures that no memory access is 

performed out of each segment boundaries. 

NetVM does not provide any explicit mechanism for memory allocation and 

deallocation. All memory segments are statically allocated, either in the initialization 

phase, or at the creation of an exchange buffer. This choice is mainly dictated by 

performance constraints, since memory allocation and deallocation at runtime may be 

costly on some architectures, and by the consideration of the fact that in real-world 

packet processing applications, persistent and complex data structures (e.g. a forwarding 

table) are usually created by the control plane (e.g. through a routing protocol process or 

manual configuration) and consumed in a read-only fashion by the data-plane program. 

On the other hand, if a NetVM application would need a memory allocation mechanism 

for managing complex memory structures that must be updated at runtime, such as for 

example a session table, the programmer should consider to abstract the complex 
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functionality (e.g. a lookup engine) through a virtual coprocessor (see Section 2.5.5), 

enabling an efficient mapping on a wider variety of target platforms. 

2.5.3. Threading model 

Even if NetPEs can be viewed as a set of concurrent packet processing tasks, NetVM 

is based on a purely sequential threading model. In particular, the execution of a NetPE 

packet handler is tied to the presence of an exchange buffer, and only one exchange 

buffer is allowed to be processed by a NetPE at a specific time; on the other hand, an 

exchange buffer cannot be associated to more than a NetPE at a time. This stems from 

the dataflow nature of the NetVM model, for which each exchange buffer traverses a 

pipeline of NetPEs during its journey through the application, triggering the execution 

of a sequence of packet handlers. In other words, for a given exchange buffer, a specific 

instruction path of the application is executed sequentially. 

Complementarily, each NetPE during its operation “sees” a sequence of exchange 

buffers, and ideally, at a given time, every NetPE should be processing a different 

exchange buffer.  

2.5.4. NetIL Instruction Set 

The NetVM instruction set derives from the one of a generic stack machine with 

additional instructions to support packet processing. Instruction opcodes can be 

subdivided into several groups; the most important ones are listed in Table 1. 

In NetIL the only supported data type is 32 bit unsigned integer, although signed 

variants of arithmetic operators are available, ensuring a correct handling of overflow 

and underflow conditions. Memory accesses can be performed on 8, 16, and 32 bit 

locations, and each value loaded from memory is either zero or sign extended to 32 bit, 

depending on the type (signed or unsigned) of the memory read instruction. On the 

other hand, since the operand stack is 32 bit wide, 8 and 16 bit memory stores are 
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performed by truncating a 32 bit value on a byte or word boundary, keeping the least 

significant bits. 

The highly structured layout of NetVM memories is reflected in NetIL, where, for 

every kind of memory (packet, info, data), there is a specific group of access operators. 

Since numeric data in network packets is stored in network byte order (i.e. big endian), 

packet memory read and writes of 16 and 32 bit values perform an implicit network-to-

host byte order conversion; on the other hand, data is stored in the info and data 

memories in host byte order, i.e. the natural byte order of the target machine. While byte 

ordering does not affect the internal functioning of the virtual machine (since 

conversion is automatically performed when loading and storing data), this is important 

when looking at the interaction of the NetVM with the outside world. In other words, an 

external program using the NetVM must provide it a packet buffer formatted in 

network-byte order, while a simple read from the internal memory of the NetPE (if 

needed) will expect to find data in the host byte order. 

The NetIL instruction set provides operators that are frequently used in packet 

processing applications and that are likely to be implemented in hardware in network 

processing architectures, like for example bit manipulation instructions. Besides, a wide 

variety of flow control operators is available; since the main purpose of packet 

processing programs is to take decisions based on the content of network packets, the 

usual jump and branch instructions are provided, as well as the more complex field 

comparison operators and a multi-way branch (i.e. the switch/case construct). The latter 

is particularly effective for implementing protocol demultiplexing (i.e. deciding which 

is the next protocol header based on the value of a specific field). 
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Table 1. NetIL instruction set summary 

Category Examples Description 
Arithmetic and Logic add, sub, mul, neg Basic arithmetics 
 shl, shr, rol, ror Shift and rotate  
 and, or, xor, not Bitwise logic 
Bit Manipulation set.bit, clear.bit, flip.bit, test.bit Bit test, set, flip and clear 
 clz Count leading zeros 
 find.bit Find the first bit set 
Flow Control jump, jcmp.eq, jcmp.neq, jcmp.l, … Jump and branches 
 switch Switch/Case construct 
 call, ret Procedure call and return 
Locals locload, locstore Local variable load and store 
Memory Access pload.8, pload.16, pload.32 Packet memory load 
 pstore.8, pstore.16, pstore.32 Packet memory store 
 iload.8, iload.16, iload.32 Info memory load 
 istore.8, istore.16, istore.32 Info memory store 
 mload.8, mload.16, mload.32 Data memory load 
 mstore.8, mstore.16, mstore.32 Data memory store 
Field comparison jfield.eq, jfield.ne, jfield.lt, … Packet buffer comparisons 
Packet transfer pkt.send, pkt.receive Packet send and receive 
Stack management push Push constant 
 pop Discard top of the stack 
 dup Duplicate top of the stack 
Coprocessor Interaction copro.in, copro.out Coprocessor reg read/write 
 copro.invoke Invoke coprocessor operation 
 copro.init Coprocessor initialization 

2.5.5. Coprocessor Abstraction 

Since packet-processing applications usually rely on a set of functionalities that are 

often implemented directly in hardware on many network processor architectures (e.g., 

Content Addressable Memories for fast table lookups, hashing, string matching, etc.), 

the NetVM model includes the concept of virtual coprocessors, i.e. a way to make such 

features available to the programmer through a well-defined interface. A coprocessor is 

viewed by the application as a black box providing specific operations; while its 

coherent interface guarantees the portability of the software on different platforms, its 

implementation may vary from platform to platform. In particular, on architectures that 

do not provide any hardware acceleration, coprocessors should be emulated by 

software, while on architectures providing special purpose features, coprocessors may 

be mapped directly on hardware. 
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From a logical point of view, a NetVM coprocessor is composed of a set of directly 

addressable 32 bit registers and a local processing unit, as shown in Figure 4. NetVM 

Coprocessor Architecture. Registers can be accessed through the NetIL instructions 

copro.in  and copro.out , while the instruction copro.invoke  is used for 

triggering the execution of a specific operation from the processing unit.  

 
Figure 4. NetVM Coprocessor Architecture 

In particular, the operations to be performed for executing a coprocessor function are 

the following: 

Write the appropriate values into the coprocessor input registers through the 

copro.out  instruction 

Invoke a coprocessor operation through the copro.invoke  instruction 

Read the result from one or more coprocessor output registers through the 

copro.in  instruction 

Since some complex functionalities, such as the ones for regular expression 

matching, need to access the entire packet buffer (e.g. for scanning the payload in 

search of a string), the NetPE can release the exchange-buffer and pass it to a specific 

coprocessor through the copro.exbuf instruction. 
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Coprocessors may also support an initialization phase that is invoked through the 

copro.init  instruction.  

2.6. Why NetVM Enables both Portability and 
Efficiency 

The abstraction layer introduced by the NetVM exposes a set of key features that, 

while enabling the portability, also allow an efficient mapping of packet processing 

applications on extremely heterogeneous architectures. This is possible because the 

NetVM programming model favours the sharing of relevant information on the 

semantic of the application between the programmer and the compiler dedicated to 

mapping it on the target architecture. In particular, if the use of constructs borrowed 

from the application domain partially constrain the freedom of the programmer respect 

to the use of more general programming languages, like C, on the other hand, it allows 

the compiler to have a more detailed view on the intentions of the programmer, 

allowing it to perform a more efficient mapping, and to deploy more aggressive 

optimizations that a compiler for a general purpose language could not. 

This Section analyzes how such concepts are captured in NetVM, and it will point 

out how the features of its programming model enable either the portability of user 

applications, either an efficient mapping on a wide range of heterogeneous hardware 

architectures. 

2.6.1. Dataflow programming model 

As described in Section 2.5, NetVM is based on a dataflow model of network data-

plane applications, which can be usually described as a collection of relatively 

independent tasks to be performed on packets. This allows to make explicit the coarse-

grained parallelism between functional modules, enhancing the possibility of efficiently 



2.6. Why NetVM Enables both Portability and Efficiency 

 

29 

 

 

mapping the application on multi-core processors [16]. Besides, since the programmer 

has to deal with simple event handlers that are sequentially triggered by network 

packets flowing through application modules, it is quite easy understanding the logic of 

the software that can be viewed as the composition of self-contained functional blocks.  

With respect to these points, other major programming models like the purely 

sequential and the parallel ones are both subject to different kinds of problems. The 

former one, even when modular and while being more natural for the programmer, 

exposes no relevant information to the compiler for extracting the coarse-grained 

parallelism between modules, so complex and possibly inefficient analyses need to be 

put in place in the compiler when needing to parallelize the code on multiple cores [23]. 

On the other side, classical parallel programming (e.g. multithreading), based on 

concurrent modules sharing state between them, poses different problems to both the 

programmer and the compiler, because (i) the task of protecting shared state against 

hazards is left to the developer through synchronization primitives like locks, 

semaphores and mutexes, leading to software that is hard to understand and maintain, 

and (ii ) the applications based on concurrent tasks or threads, while can be easily 

mapped on multi-core environments providing hardware support for synchronization 

and locking primitives, may lead to an inefficient mapping on single core processors, 

and cannot be targeted to massively pipelined architectures, like systolic array network 

processors. Moreover, while the compiler can easily perform intra-module 

optimizations, the application of inter-module and application-wide global 

optimizations in concurrent programs can be extremely challenging. 

The event-based nature of the dataflow paradigm, which mixes both communication 

and synchronization, allows to prune away many sources of non-determinism that are 

intrinsic in multi-threading, as noted in [24], with major advantages for both the 

programmer and the compiler. With respect to the latter, when the dataflow graph of 
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modules is acyclic (and in our case it is), it is extremely simple to translate it in a single 

control flow graph, obtaining a completely sequential program, by inlining consecutive 

modules.  

From the point of view of portability and efficiency, this enhances the chances of 

mapping NetVM applications on extremely heterogeneous platforms, such as single 

core, multi core, or even systolic array network processors, without performance 

penalties, because the compiler has a complete view on the application, and can perform 

aggressive inter-module optimizations and, on multi-core architectures, apply any 

suitable strategy for automatic parallelization of sequential code, as those presented in 

[23].  

2.6.2. Domain-Specific Intermediate Language 

NetIL, the language employed for programming NetVM applications, has been 

designed to be general enough for being the ideal target for multiple high-level 

languages and, at the same time, for providing an adequate level of abstraction in order 

to allow the portability of packet processing software and an efficient mapping across 

several heterogeneous network processing platforms. In fact, NetIL has been profitably 

employed for the development of two high-level frontends, mainly for packet filtering 

and classification languages, which have been presented in [25][26]. 

In contrast, other frameworks for the development of efficient packet processing 

applications [13][14][15][16], tie their solution to a high-level programming language 

(e.g. domain specific, or derived from the C language), with the result of limiting the 

generality and the flexibility of the proposed approach. 

As pointed out in Section 2.2, besides the mentioned problems from the point of 

view of generality, some of the solutions proposed by both the industry and the 

academia suffer also from the point of view of portability, because of the choice of 

incorporating in the high level language the features that are specific to the target 
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architecture, or to its low level programming model. For example, the IXA SDK, 

provided by Intel for programming the network processors of the IXP family, relies on a 

modified version of the C language, where key assembly instructions of the target ISA 

(Instruction Set Architecture) are exposed to both the programmer and the compiler as 

intrinsic functions (i.e. functions whose semantic is known by the compiler), with the 

result of tightly coupling the software to the specific architecture and preventing its 

portability. Another approach that may pose some problems for portability over 

heterogeneous architectures is the one proposed with PacLang [15], where the high 

level language exposes constructs representing tasks, queues and explicit 

synchronization primitives that are tied to the multi-threaded programming model of the 

target platform (i.e. the Intel IXP2400).  

NetIL, instead of abstracting the hardware functionalities of a specific architecture, 

provides constructs that abstract the functionalities that are commonly needed by packet 

processing applications, making them available to the programmer. A backend compiler 

can then map them efficiently on the hardware features that the target platform may 

provide, with the result of enabling flexibility, portability and efficiency, all at the same 

time. At some extent, this can be viewed as a generalization of the approach proposed 

by [14], which presents a compiler for a modified version of the C language, where the 

packet manipulation functionalities commonly used by networking applications (e.g. 

packet access, bit manipulation, etc.) are exposed as intrinsics, which can be efficiently 

mapped on the target platform through the generation of the appropriate assembly 

instruction sequences, instead of relying on potentially inefficient library function calls. 

The key point that the two solutions share in common is the aim of rendering explicit in 

the source language the most common packet manipulation functionalities, as well as 

other features borrowed from the specific application domain, thus providing an 

adequate abstraction layer to the programmer and allowing the compiler to perform 
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more aggressive optimizations based on the knowledge of the semantic of such 

operations. Moreover, since NetIL also aims at being general enough to support 

different kinds of applications it is not tied to any specific high-level language and it 

adequately mixes low and mid level constructs, in order to be an effective target for 

several (possibly novel) high-level languages. 

As a simple example, NetIL provides the switch-case construct, which is common in 

many high-level languages. In particular, the presence of such construct is very 

important, because it is widely used in packet processing programs for demultiplexing 

protocol headers, and making it explicit in the language allows a backend compiler to 

chose how implement it in the most efficient way on the target platform, for example by 

exploiting a TCAM-based lookup coprocessor, as Section 4.5.3.3 will show.  

Another example is given by the field-comparison and bit-manipulation instructions 

of NetIL, which correspond to functionalities commonly used in packet processing 

programs. Even though it is likely that some NPU architectures provide similar 

instructions, the NetIL abstraction completely hides low level details from the 

programmer, who simply use those them as packet processing primitives, delegating to 

the compiler the task of  finding an efficient mapping on the target platform, either 

based on hardware primitives, where these are available, either emulated in software 

where these are absent. 

2.6.3. Structured Memory Model 

As described in Section 2.5.2, NetVM provides a set of orthogonal memory segments 

that reflect the needs of the programmer for storing temporary or persistent state, and 

for communicating values between different modules of a packet-processing 

application. This enables a specific memory location to acquire a semantic meaning for 

both the programmer and the compiler. 



2.6. Why NetVM Enables both Portability and Efficiency 

 

33 

 

 

In particular, the presence of an explicitly identifiable memory representing the 

packet buffer is extremely important, either because several Network Processors (e.g. 

the Xelerated X11 and the Cavium Octeon) give it a special treatment, either because, as 

will be pointed out in Section 4.5.1, even on general purpose architectures like the Intel 

x86, this enhances the opportunity of deploying very effective special purpose 

optimization techniques.  

On the other hand, the flat memory model employed in other programming models 

like the one of the traditional C language, besides preventing the deployment of special 

purpose optimizations specifically based on the actual meaning of a memory buffer (e.g. 

the buffer containing packet data), it cannot be mapped on some NPU architectures, like 

those of the Intel IXA family, or the Xelerated X11, which are based on an explicit 

hierarchy of memories. The solution commonly employed in such cases is to extend the 

language, introducing special storage classes for informing the compiler about which 

memory of the target architecture should be used for containing a user buffer. For 

example, the Intel IXP2xxx network processors provide separate interfaces for 

accessing SRAM and SDRAM memories, which are characterized by different 

latencies, costs and sizes. Besides, each processing element of the NPU (called 

“Microengine”) owns a small and fast private memory called “scratchpad”. The 

programmer is in charge of deciding in which of these memories should reside each 

specific portion of the state (e.g. usually packet data is stored in SDRAM, while single 

static values like counters are stored in the scratchpad memory), so the Intel IXA SDK 

provides a programming language derived by C (Microengine C) [27], which has been 

extended with a set of architecture-specific storage classes for allowing to specify at 

which kind of memory a pointer should refer. Figure 5 shows an example of such 

scenario, where the packet buffer is mapped on SDRAM. The storage class of a pointer 

is specified through the __declspec  keyword. 
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It appears obvious that such kind of solutions, which make visible the characteristics 

of the target platform to the programmer, pose a strong limit to portability. On the other 

side, NetVM memories reflect the purpose for which the programmer use them, i.e. (i) 

accessing the packet buffer (packet memory), (ii ) communicating values between 

consecutive modules (info partition), and (iii) storing persistent and static data (data 

memory). No information is given to the programmer about which kind of memory will 

be actually used for mapping them on the target architecture, since such task is 

completely left to the compiler, which can always chose the more efficient solution with 

the result of enabling portability while still ensuring efficiency. 

void process( __declspec(sdram) uint8* packet, uint16 len)
{

if (*(uint16*)&packet[12] == 0x800)
processIP(&packet[14]);

return;
}

void process( __declspec(sdram) uint8* packet, uint16 len)
{

if (*(uint16*)&packet[12] == 0x800)
processIP(&packet[14]);

return;
}

Microengine C
architecture-specific storage class

Microengine
#1

Microengine
#1

SDRAM SRAM

Intel IXP 2xxx

 
Figure 5. Use of architecture-specific storage-classes for mapping Intel IXP2xxx memories in C 

2.6.4. Virtual Coprocessors 

Another aspect that is very critical for efficiently mapping packet processing 

applications on network processor architectures is the exploitation of advanced 
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functionalities that may be implemented in hardware as coprocessors (e.g. hashing, 

lookup, string-matching, etc.).  

The available solutions can mainly be ascribed to one of the followings: (i) 

encapsulating advanced features in function libraries, (ii ) exposing them as intrinsics or 

compiler known functions, (iii ) using inline assembly. Unfortunately, each one of these 

methods suffers from the point of view of portability. First, libraries are based on the 

concept of function call, which is not always available in all network processor 

architectures, e.g. those of the Intel IXP family, or on systolic array network processors 

like the Xelerated X11 [4]. Moreover, libraries are software components that are 

compiled and optimized separately, thus preventing aggressive application-wide 

optimizations. Intrinsics may represent a solution, because the compiler know their 

semantic and can map them efficiently on the available hardware features, however, 

when they abstract low level functionalities, the result is source code highly tied to the 

target architecture.  Finally, inline assembly provides a high potential from the point of 

view of efficiency, but it highly prevents portability, as well as maintainability and 

dependability. 

The solution proposed by NetVM virtual coprocessors can be viewed as an extension 

of the concept of “compiler known functions”. In fact, virtual coprocessors are more 

like “compiler known objects”, i.e. modules with their own state and with “methods” 

that provide complex functionalities whose operation is specified by the NetVM model, 

and which a backend compiler can map in the most efficient way on the target 

architecture. In particular they can be implemented by leveraging the presence of  

special purpose hardware, if present, or emulated in software otherwise. 

Even though it would be possible for a NetVM virtual coprocessor to abstract a real 

hardware coprocessor, this would lead to similar problems from the point of view of 

portability, as those pointed out before. Indeed, virtual coprocessors, instead of 
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abstracting specific hardware functionalities, they abstract “macro-functionalities” that 

are commonly employed in packet-processing applications, e.g. exact-match lookup, 

string matching and regular expression matching, enabling the portability of  

applications across heterogeneous architectures. In particular, for example the NetVM 

lookup coprocessor could be implemented using a T-CAM on some architectures (e.g. 

the Xelerated X11), or as a hash table, possibly leveraging a hashing coprocessor like 

the one provided by the Intel IXP2xxx network processors, or finally it could be 

implemented completely in software (e.g. through a binary search tree) on general 

purpose platforms where no specific hardware acceleration is present, as depicted in 

Figure 6.  

Insert(key, val)
Lookup(key)
Delete(key)
Update(key, val)

Lookup Coprocessor

Primitives:

Lookup
Table

NetVM

T-CAM Hash-tableBinary-Tree

Hardware-based
Implementation

Software-based
Implementations

Target Architecture

 
Figure 6. Possible mappings for a lookup coprocessor 

2.7. Conclusion 

This chapter highlights the need for a suitable abstraction for programming high-

speed packet processing applications, capable of allowing them to be both efficient and 

portable across a wide range of special purpose architectures. The NetVM virtual 

machine is introduced as a possible solution, showing that portability and efficiency 
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might not be considered as conflicting requirements. In particular, the NetVM 

programming model, by capturing the peculiar characteristics of the network processing 

application domain, provides the programmer with an abstraction layer capable of 

completely hiding the details of the actual execution platform, thus enabling portability. 

On the other hand, it also allows a compiler implementing it to have a more detailed 

view on the semantic of the application, thus enabling the deployment of special 

purpose optimization and mapping techniques, which favour runtime efficiency. 

The goodness of such approach will be demonstrated in the second part of this thesis, 

where the implementation of the NetVM model in a multi-target optimizing compiler is 

described, and performance evaluation results are presented.  
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3. Decoupling Programs from the 
Knowledge of Protocol Formats 

3.1. Enabling Protocol-Agnostic Packet Processing 
Applications 

Packet processing applications such as routers, firewalls and IDSs, rely on protocol 

demultiplexing functionalities for determining the presence of particular protocol 

headers in packets, and for extracting the actual values of specific fields to be used for 

performing more complicated operations. For example, the forwarding process in a 

router needs to analyze the value of the destination address contained in IP packets for 

determining the next hop, while a firewall or an ACL module needs to know the values 

of a given set of fields for performing packet classification.  

The traditional approach of hardcoding the format of protocol headers in the software 

of the abovementioned type of applications, although being efficient in terms of runtime 

performances, suffers from non-negligible limitations with respect to flexibility and 

maintainability. In particular, developers must have a deep knowledge of protocol 
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header format, and adding support for new protocols implies modifying the application, 

debugging and testing it again. Besides, different applications that rely on similar 

protocol decoding functionalities are usually based on custom code, which results in a 

multiplication of the amount of software to be written and maintained, with a 

corresponding increase in the incidence of bugs and security flaws.  

An effective way to overcome such problems would be to isolate the knowledge 

about the format of network protocols in a separate module, by using an application 

independent language for describing the binary layout of protocols, and by creating a 

common database of protocol descriptions, usable by several heterogeneous 

applications. This is the case of the Network Protocol Description Language (NetPDL) 

[28], formerly proposed by the NetGroup at Politecnico di Torino, which aims at 

describing the format of network protocol headers and encapsulation rules between 

different protocols. An API provides the appropriate functionalities for interacting with 

the protocol description database, allowing user programs to be completely unaware of 

the exact location of header fields in network packets, and delegating to an external 

module the task of demultiplexing the headers present in a packet buffer and extracting 

the actual values of specific fields, as shown in Figure 7. 
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[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Protocol 
Database
(NetPDL)

Demultiplex protocol headers
searching for IP

Extract actual offset and size of 
ip.src and ip.dst in the 

current packet

IPv4 format

Version: 4 bits
HeaderLength: 4 bits
TOS: 8 bits
Total Length: 16 bits
Identification: 16 bits
...
Src: 32 bits
Dst: 32 bits

User Application (e.g. Firewall) Packet Processing API

 

Figure 7. Decoupling applications from the knowledge of protocol formats 

However, if the depicted scenario introduces a high flexibility, given by the 

possibility of seamlessly adding support to novel protocols without any modification to 

applications, its applicability in the implementation of high-speed data plane network 

devices highly depends on its capability to compete with the runtime performances 

provided by the hardcoded approach.  

Indeed, NetPDL has been profitably used for implementing a packet-decoder [28], 

i.e. an engine for parsing the content of network packets and extracting the actual values 

of each field, according to the information provided by an external protocol description 

database. Such module is now part of the NetBee library [29] and it is used for 

visualizing packet-data in the Analyzer [30] network monitor. However, the packet-

decoder is based on a step-by-step interpretation of the NetPDL database, and even 

though its performances can be reasonable for an offline application such as a network 

sniffer, they are not compatible with the requirements of high speed data-plane 

applications, such as routers or firewalls, which have to cope with ever increasing line 

rates.  

A solution capable of guaranteeing performances that are comparable to those of 

completely hand-written programs, consists in translating protocol descriptions into 
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native code through a compiler. As shown in Figure 8., the NetPDL language could be 

translated almost one by one into a C or C++ module with the same capabilities of the 

one based on NetPDL interpretation. However, the use of static compilation would 

highly mitigate the advantages of having an external and possibly dynamically 

updatable database of protocol descriptions, because the packet processing module 

generated from descriptions would suffer from similar problems of its hardcoded 

counterpart. Indeed, adding support for a new protocol would require extending the 

external protocol database, regenerating the module and linking it against the user 

application. Moreover, such scheme would prevent to optimize and tune the generated 

code based on the needs of the user. For instance, in the depicted scenario, even if the 

user application only requests the extraction of the ip.src and ip.dst fields, the packet 

decoding module statically generated from NetPDL would contain code for extracting 

the values of all the fields of the IP protocol, with a resulting lack of efficiency. 

[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Demultiplex protocol headers
searching for IP

Extract actual offset and size of 
ip.src and ip.dst in the 

current packet

User Application (e.g. Firewall) Packet Processing API

Packet processing module
(e.g. C/C++ function)

Packet Processed
Data

Protocol 
Database
(NetPDL)

NetPDL
Compiler

 
Figure 8. Generation of a packet processing module from protocol descriptions 

The second major argument of this thesis is that in order to support an efficient 

decoupling of the logic of packet processing applications from the knowledge of the 

format of network protocols, dynamic compilation techniques must be put in place, for 

generating code to be executed on a configurable packet processor, thus enabling the 
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dynamic update of the protocol database and the deployment of any suitable 

optimization. 

The solution proposed here relies on an additional language for defining packet 

filtering and field extraction rules (NetPFL), and on a compiler for translating such rules 

into a packet processing program for the NetVM, according to the information on 

protocol format and encapsulation contained in a NetPDL database. 

The overall architecture is outlined in Figure 9. NetPFL provides an interface based 

on simple packet processing primitives that allow shaping NetPDL packet decoding 

functionalities based on the actual user needs (e.g. specifying the information to be 

extracted from network packets). Besides, since the operation of the NetVM-based 

packet processor can be dinamically configured by simply changing the program to be 

executed, the proposed solution enables a high degree of flexibility, given by the 

possibility to adding support to new protocols by updating protocol descriptions at 

runtime. The just-in-time compilation capabilities of NetVM guarantee the runtime 

efficiency of the approach. 
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[...]

if packet contains ip
{

get(ip.src, ip.dst);

[...]
}

Demultiplex protocol headers
searching for IP

Extract actual offset and size of 
ip.src and ip.dst in the current 

packet

User Application (e.g. Firewall) Packet Processing API

NetVMNetPDL/NetPFL
Compiler

NetVM
Program

NetPFL filtering language:
“ip extractfields(ip.sr, ip.dst)

NetPDL

Packet Processed
Data

 
Figure 9. Complete view of the proposed packet processing architecture 

As a proof of concept, an optimizing compiler for the translation of NetPDL-based 

packet filtering rules into a program for the Network Virtual Machine has been designed 

and implemented, demonstrating that NetPDL can be effectively used for driving the 

dynamic generation of efficient packet processing programs.  

The rest of this Chapter will give an overview on the main building blocks, namely 

NetPDL and NetPFL (NetVM has been presented in Chapter 2), while the compiler 

architecture, and the deployed code generation techniques will be discussed in the 

second part of this thesis. 
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3.2. Related Technologies: NetPDL and NetPFL 

3.2.1. NetPDL 

The NetPDL language enables the description of how protocol headers are laid out 

and chained together inside network packets. Since it is based on XML, specific tags, 

characterized by several attributes and organized in hierarchical structures, identify the 

elements of the language. 

Describing a protocol in NetPDL means enclosing in a section identified by the 

<protocol>  tag the list and the binary format of the fields that build up a header, as 

well as the encapsulation relationships that can be present between different protocols. 

Figure 10 shows a sample NetPDL specification for the Ethernet protocol header. In the 

<format>  section we find the description of the binary layout of the header as a list of 

<field>  elements. The <encapsulation>  section, on its side, identifies the 

conditions that need to be met for other protocols to be encapsulated into the one being 

described. For instance, the <nextproto>  element, acts as a pointer to the next 

protocol header. 

NetPDL allows the description of complex headers through the definition of several 

kinds of header fields (e.g., fixed, token delimited and variable size fields, bitfields, 

padding and more) and by using structured control flow constructs, such as if-then-else, 

switch-case, and loop. Conditional elements can appear also in the 

<encapsulation>  section for describing complex encapsulation rules. 

While such features are sufficient for the description of L2-L4 protocols, in order to 

support the description and the recognition of L7 protocols, NetPDL provides advanced 

features that will be briefly outlined here. More details on the NetPDL language can be 

found in [31]. 
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<protocol name="Ethernet" longname="Ethernet 802.3“ >

<format>

<fields>

<field type="fixed" name="dst" longname="MAC Dest."  size="6"/>

<field type="fixed" name="src" longname="MAC Source " size="6"/>

<field type="fixed" name="type" longname="Ethertype " size="2"/>

</fields>

</format>

<encapsulation>

<switch expr="buf2int(type)">

<case value="0x0800"> <nextproto name="#IP"/> </cas e>

<case value="0x0806"> <nextproto name="#ARP"/> </ca se>

</switch>

</encapsulation>

</protocol>  
Figure 10. NetPDL description of the Ethernet protocol header 

3.2.1.1. Protocol verification 

TCP/IP has an ambiguous mechanism for application-layer de-multiplexing. For 

instance, while a value 0x800 in the ethertype field uniquely identifies an IP packet, the 

value “80” in the TCP port does not necessary mean that the packet contains an HTTP 

payload. For instance, several peer to peer application use this port using custom 

protocols other than HTTP.  In order to allow some form of validity check on the 

protocol to guarantee that the packet really is what it appears to be, NetPDL provides 

the <verify>  construct, which includes both an expression and a set of associated 

actions. The verification can either return “found ” or “not found ”, or it can 

postpone the result with a “deferred ” or “candidate ” return code. The 

“deferred ” is used for protocols that require several packets to be analyzed in order 

to return an exact answer (e.g. RTP, Skype). Vice versa, the “candidate ” is used for 

protocols in which the payload can match several protocols at the same time. For 

instance, KAZAA communicates through HTTP messages that contain a special 

optional header; hence KAZAA packets are also valid HTTP ones. However, NetPDL is 

able to differentiate among these protocols and pick the correct one (in this case, the 

check against the HTTP signature returns “candidate ”, and this protocol will be the 
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correct one unless a check against another protocol returns “found ”, in which case the 

second protocol is chosen). 

3.2.1.2. Session Tracking 

Session Tracking is mostly used to keep track of TCP sessions. This mechanism 

leverages a simple table containing the 5-tuple that includes the ID of known sessions 

and the associated application-layer protocol.  

In order to implement session tracking, NetPDL defines a special bi-dimensional 

variable, the <lookuptable>  element, which supports an arbitrary number of fields. 

Fields are either keys to locate entries (“primary key” in database terminology) or data 

(such as protocol ID) related to the given element. 

Although bi-dimensional variables can have any use, they are particularly useful for 

transport-layer session tracking. These entries (e.g. TCP sessions) have the necessity of 

being properly managed, e.g., we must be able to purge “zombie” TCP sessions that are 

no longer active. For this reason, NetPDL can associate an attribute to each entry, 

defining its validity. An entry can last forever (unless deleted by an explicit command in 

the NetPDL file), or it can be automatically cleared off after a given inactivity time. 

3.2.1.3. Support to application-negotiated sessions 

For the case of applications that dynamically negotiate the parameters of the session, 

e.g., the case of FTP data connection whose ports are dynamically negotiated in the FTP 

control channel, or SIP sessions that dynamically negotiate RTP ports, NetPDL supports 

a set of processing elements through the <execute-code>  section. For instance, the 

definition of the FTP protocol will contain a piece of code that recognizes the 

negotiation of a new FTP data session, and inserts a new entry into the TCP session 

table. Usually these entries do not have to go through a verification process – i.e., if the 
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“master” session is trusted (it has already been verified before), its “child” sessions 

should be trusted as well. 

3.2.2. Defining actions: NetPFL 

Even though NetPDL provides features that go beyond those of a completely 

declarative language, its only purpose is the description of the format of network 

protocol headers and it provides no direct means for defining actions to be executed 

when specific conditions are satisfied. Here is where the Network Packet Filtering 

Language (NetPFL) [32] comes into play.  

NetPFL is based on a filter-action model to express packet filtering conditions and 

packet handling statements, such as accepting a packet, or extracting the actual values 

of a set of fields. The filtering expression can be based on (i) protocols (i.e. a filter is 

satisfied if the packet contains the specified protocol header), and (ii)  field values (i.e. a 

filter can be specified as an expression involving the value of one or more header 

fields). In NetPFL, basic predicates can be composed with the Boolean operators AND, 

OR, and NOT in order to express complex filters. Since the filtering expression is an 

optional part of a NetPFL statement, when a filter is not specified, the action should be 

applied to all incoming packets. 

Figure 11 shows two sample NetPFL rules: the first represents a complex filtering 

expression based on the presence of a tcp  header and on a condition on the ip.src  

field, while the second is a field extraction statement for returning the values of the 

ip.src , ip.dst , udp.sport  and udp.dport  fields contained in each udp  packet.  

ip.src == 10.0.0.1 and tcp returnpacket as stream 1
udp extractfields( ip.src, ip.dst, udp.sport, udp.dport ) as stream 2

 
Figure 11. NetPFL expression examples. 

NetPFL is built on top of NetPDL and its main tokens (i.e. protocol names and 

header fields) are not specified explicitly in the language, but are defined in a NetPDL 
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database. In other words, the expressions in Figure 11 make sense only if the NetPDL 

description contains the definition of the specified protocols and fields, i.e. a protocol 

named “ip ” whose header contains the fields named “src ” and “dst ”, a protocol 

named “tcp ”, and a protocol named “udp ” with two fields named respectively 

“sport ” and “dport ”. 

For a detailed specification of the NetPFL language, please refer to [32]. 

3.3. Conclusion 

This Chapter outlines the architecture of a possible solution for efficiently 

decoupling the logic of packet processing applications from the knowledge of the 

format of network protocols, and presents its main building blocks.  

Using the NetPFL language, a user application can specify the kind of information to 

be extracted from network packets, while the actual format of supported protocols 

resides in an external NetPDL database of protocol descriptions. NetPFL rules are used 

for driving the translation of NetPDL descriptions into code to be executed on the 

NetVM virtual machine, which can be compiled just-in-time in order to guarantee 

runtime performances. 

This approach enables both flexibility and efficiency, overcoming the limitations 

either of an approach based on interpretation, either of an approach based on the static 

compilation of NetPDL descriptions. 

The validation of such solution is presented in the second part of this thesis, also 

reporting performance evaluation results. 
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4. Implementing the NetVM Model 

4.1. Introduction 

In order to demonstrate the goodness of the NetVM programming model and its 

capability to enable the creation of portable and efficient packet processing software, 

the NetVM architecture  has been implemented as a portable runtime environment and a 

multi-target optimizing compiler infrastructure. The compiler is able to operate either as 

a Just in Time or as an Ahead of Time compiler, generating native or assembly code, 

depending on the target platform. Optimizations work on two different levels: the higher 

level is architecture-independent and operates on the code removing redundancies and 

useless computations, whereas the lower one is target-specific and performs the actual 

mappings between the NetVM model and the target machine, possibly exploiting 

special purpose hardware units available on modern NPUs. 

Experimental results reported in Chapter 7, demonstrate the effectiveness of the 

approach, showing that thanks to the characteristics exposed by the NetVM model, the 

generated code has performances often better than those obtained from hand-written 

programs compiled with state-of-the-art general-purpose compilers. 
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4.2. The NetVM Framework 

The NetVM model requires a runtime environment acting as a communication layer 

with the external world. Its main function is to provide I/O facilities, to handle the 

coprocessors implementation (hardware or software) and to manage the application’s 

resources, e.g. memory allocation. In fact a NetVM application needs to receive packets 

from input interfaces and to forward them to output interfaces after the processing. Such 

operations are heavily dependent on the hardware characteristics. In other words, the 

runtime environment must implement an abstraction layer making all such details 

transparent to the application and to the programmer.  

On the other hand, since a NetVM application relies on different elements (NetPEs, 

coprocessors, etc), whose configuration can be chosen by the programmer, the runtime 

environment has to (1) allow the programmer to create and configure each component, 

and (2) implement these elements on different architectures either by exploiting 

hardware modules or by supplying software implementation of unavailable components. 
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Figure 12. NetVM Framework Architecture 

The NetVM model is implemented as a framework, (whose logical layout is shown 

in Figure 12), which comprises a portable runtime environment and a multi-target 
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optimizing compiler. At the top of the framework (A) sits a programming interface that 

allows the programmer to instantiate and manage the main NetVM components in the 

user applications. The middle layer (B) represents the core of the framework, 

implementing the architecture-independent parts of the runtime environment and a 

NetIL interpreter, as well as the target-independent components of the compiler. Finally, 

at the bottom of the structure (C) we find target specific modules, i.e. the compiler back-

ends and the architecture-specific parts of the runtime environment, which implement 

the actual mapping of the NetVM functionalities (i.e. instruction set and virtual 

coprocessors), on the target architecture. 

4.3. Compiler Infrastructure 

As Figure 13 shows, the compiler follows a classical 3-stage model. First, the compiler 

front-end builds a medium-level intermediate representation (MIR) of the source 

program, while checking its formal correctness; then the MIR is fed into the optimizer, 

whose objective is to reduce code redundancies and improve efficiency. A platform-

dependent back-end lowers the optimized MIR to a low level intermediate 

representation (LIR), which is very close to the assembly language of the target 

architecture and performs additional optimizations. Finally, the resulting machine code 

is emitted. 

A program represented in MIR form is described as a list of expression trees, whose 

root nodes represent statements (i.e. assignment and control flow operators), while leaf 

nodes represent the operands of an expression (e.g. constant values or registers). The 

LIR form, instead, represents the program as a sequence of three-address instructions 

closer to the target machine language. The reason for implementing a multi-level 

intermediate representation is based on the need to delay the lowering phase and to 

provide as much information as possible on the source program to the optimizer. This 
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makes it possible to perform more aggressive optimizations, based on the knowledge of 

the semantic of the constructs employed by the programmer, as will be pointed out in 

Section 4.5. 
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Figure 13. Compiler Architecture 

The whole compilation framework is designed in a modular fashion, in order to ease 

the task of adding new back-ends. In particular, the analysis and optimization 

algorithms are able to work on different intermediate representations, and each back-end 

can configure the optimizer in order to apply only the transformations that are suitable 

for the target platform. 

The compiler can generate either machine code in memory, following the Just-In-

Time paradigm, or assembly files as an Ahead-Of-Time compiler. In the latter case, the 

programs generated by the compiler are assembled by using third party tools (e.g. GCC 

or the development tools provided for the specific target platform). 

4.4. The Compilation Flow 

Although a source program can be translated directly into the target language, compilers 

are generally organized as a series of phases, each of which apply a distinct transformation 
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to the source program. This scheme creates the need for an intermediate representation for 

the code that is continuously transformed during the compilation process. Since the details 

of the target language should be confined to the compiler backend as far as possible, the use 

of a target-independent intermediate provides the following benefits:  

• Retargeting is facilitated: a compiler for a different target architecture can be created 

by only creating a new back-end  

• All target-independent optimizations can be applied to the intermediate 

representation before passing it to the backend 

The NetVM compiler uses two different representations for the program being 

compiled: a Medium Intermediate Representation MIR and a Low Level Intermediate 

Representation LLIR. The former is a machine-independent representation created by 

the compiler front-end and it is transformed into the latter, machine-dependent, by the 

instruction selection phase of every backend.  

In MIR form, the code is described as a list of statements1; each statement represents 

a tree whose nodes represent expressions. The operators employed in this phase are 

NetIL ones, allowing the compiler to exploit the knowledge of the semantics of domain-

specific constructs exposed by the language, as pointed out in Section 2.6. The operand 

stack is mapped on expression trees, while operations on local variables are converted 

into operations on an infinite set of registers, called “virtual registers”. Figure 14 shows an 

example of a NetIL program being converted into a list of MIR statements. 

                                                   

 

 

1Statements are roughly equivalent to sentences in natural languages. A statement forms 

a complete unit of execution: a=b+c  is a statement, while b+c  is an expression. 
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The LLIR intermediate representation is a list of assembly instructions whose 

operators are very close to the target machine language. Each backend maps MIR 

statements on lists of LLIR instructions and then applies on it target-specific 

transformations and optimizations. 

push 12 ;offset of the ethertype field
upload.16        ;load the ethertype field
push 2048        ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30          ;offset of the ipdst field
upload.32        ;load the ipdst field
push 167772161   ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1    ;filter true

DISCARD:
ret ;filter false

push 12 ;offset of the ethertype field
upload.16        ;load the ethertype field
push 2048        ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30          ;offset of the ipdst field
upload.32        ;load the ipdst field
push 167772161   ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1    ;filter true

DISCARD:
ret ;filter false

jcmp.neq DISCARD

push 12upload.16

push 2048

jcmp.neq DISCARD

push 30upload.32

push 
167772161 

ACCEPT:

pkt.send out1

DISCARD:

ret

Statements
List

Expression
Trees

 
Figure 14. Conversion of a NetIL program into a MIR list of statements 

Figure 15 shows an overview of the compilation flow regarding mid-level 

transformations, which will be the argument of the rest of this section. 
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Figure 15. Compilation Phases 

4.4.1. Mid-Level Optimizations 

In order to provide a general framework for simplifying the development of dataflow 

analysis and optimization algorithms, the NetVM compiler translates the MIR into a 

Static Single Assignment form (SSA) [33]. The SSA form implies that every variable is 

assigned exactly once, in this way the relationships between the definition and the uses 

of every variable are made explicit in the MIR, without altering the semantics of the 

program. The optimizing algorithms benefit from this form in terms of simplicity of 

implementation. 

The optimization algorithms implemented in the NetVM framework have been 

selected after an accurate analysis of existing NetIL code, either hand-written, or 

automatically generated through a set of high-level frontends. In particular, the code 

generated by the packet filter compiler presented in [25], exposes several redundancies 

and suboptimal recurrent patterns. The implemented algorithms aim also at taking into 

account such situations, by removing the negative effects introduced by automatic code 

generation.  

Among the implemented optimization algorithms, Constant Propagation replaces 

every use of constant-initialized registers with the respective values. Such optimization 
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removes assignment instructions where a constant is copied into a register whose value 

is never changed and often enables the application of other optimizations, such as 

Constant Folding or Dead Code Elimination. The former of these tries to simplify all the 

operations whose operands are constant, by replacing them with the result computed at 

compile-time. The latter removes instructions defining variables that are no longer used 

later in the code (i.e. dead variables). Algebraic Simplification has some similarities 

with constant folding, but, instead of computing at compile time the result of constant 

expressions, it exploits algebraic properties of mathematical and logic instructions to 

replace sub-expressions that can be computed at compile time with their result, for 

example by substituting the expression (a * 1) with (a). Reassociation is a technique 

that joins different statement trees into deeper ones, enabling further transformations to 

be applied by other algorithms like Constant Folding [34].  

The role of reassociation is evident when considering the structure of typical packet 

demultiplexing programs. These programs usually contain sequences of operations for 

finding the offsets of both protocol headers and fields in the packet buffer. Figure 16A 

shows an example of such a sequence of statements for incrementing a variable holding 

the current offset (i.e. r0), in order to point to the beginning of the TCP header. The 

increment is made in two steps, by adding the lengths of the Ethernet and IP headers (14 

and 20 bytes respectively). The reassociation algorithm joins the two statements 

resulting in the statement on the left of Figure 16B, allowing further optimizations. 

Indeed, constant folding can remove the second ADD node, resulting in the tree on the 

right. Since this kind of pattern is very frequent, reassociation is very effective in terms 

of performance gain. 
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Figure 16. The role of reassociation 

All optimizations described above are performed on the IR in SSA form, but in order 

to produce executable code, this has to be reverted back to a normal form: this step 

leaves the program in a state where most variables are defined only once and a large 

number of copies exist in the program. This is clearly non-optimal because such 

quantity of copies is cumbersome to execute and a large number of virtual register can 

burden subsequent compiler modules, affecting compilation times. For these reasons we 

implemented a Copy Coalescing [35] algorithm, which scans the code for copies and 

tries to assign the same name to both the source and the destination variables involved 

in the copy. This is safe if the variables involved have live ranges that do not overlap. 

Beside optimizations based on dataflow analyses, the optimizer also provides 

algorithms for simplifying the structure of the control flow graph, such as Branch 

Simplification, for replacing all conditional jumps that can be evaluated at compile-time 

with unconditional jumps, Jump-to-Jump Elimination for bypassing and removing basic 

blocks containing only a jump instruction, and Unreachable Code Elimination for 

removing unreachable basic blocks [34]. 
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Although the architecture-independent optimization algorithms implemented look 

simple and are widely known from classical compiler theory, they have proven to be 

extremely effective for two main reasons: (i) packet-processing applications use a very 

simple structure of the code, compared to general purpose ones, and (ii ) these provide 

the base for further target-specific transformations that can be applied by a specific 

back-end, as will be detailed in 4.5. The combination of both architecture-independent 

and target-specific optimizations results in the production of code that in some cases is 

faster than the one generated by state-of-the-art C compilers, as Chapter 0 will show. 

4.5. Compiler Backends 

The NetVM compiler infrastructure provides three backends: one for the Intel x86 

architecture, one for the Cavium Octeon network processor and one for the Xelerated 

X11 systolic array processor. In particular, the former two have a very similar structure, 

while the latter, being targeted to a very special purpose architecture, relies on a more 

complicated sequence of compilation phases. 

Every backend of the NetVM compiler translates MIR statements into sequences of 

LLIR instructions implementing them. This task is handled through a Bottom-Up 

Rewriting System (BURS) [36], which executes a tree-matching algorithm driven by 

architecture-specific rules that specify how a portion of the intermediate representation 

(i.e. an expression sub-tree) should be translated into target instructions. In particular, 

different rules can relate to overlapping tree patterns, and the BURS is able to chose the 

best (i.e. the less expensive) combination that covers the most extended expression tree. 

BURS can be configured to recognize very specific patterns that can be part of an 

algorithm, enabling a very flexible approach in the creation of the target code. For 

instance, an algorithm made up of three pieces ABC can be implemented as AB in 
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software and C in hardware on one platform, and as A in software and BC in hardware 

on another platform. 

4.5.1. X86 Backend 

The x86 backend follows the Just-In-Time paradigm: for each NetPE composing a 

NetVM application it generates the binary code for a function receiving an Exchange 

Buffer as an argument. The sequence of the compilation phases involved is shown in 

Figure 17. 
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Figure 17. Compilation phases for the x86 backend 

The x86 backend, after having mapped MIR statements onto x86 LLIR instructions 

in the BURS instruction selection phase, performs register allocation in order to assign a 

machine register or a memory location to every virtual register used in the MIR 

program. The register allocation algorithm implemented performs is based on graph 

coloring [37][38], using the spill heuristic proposed in [39] for minimizing spill costs 

and for guaranteeing an optimal utilization of machine registers.  
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4.5.1.1. Intel X86 low-level optimizations 

The set of BURS rules implemented in the back-end aims at addressing two 

problems: (i) the optimal exploitation of the complex instruction set of the target 

machine, and (ii ) the application of specific optimizations for packet-processing 

applications. 

With respect to the first kind of optimization, the CISC-based Intel x86 includes 

powerful and complex instructions, which allow specific NetIL patterns to be translated 

into a single x86 instruction, with the result of minimizing the code size. The BURS 

instruction selection algorithm makes this operation straightforward. For example, Figure 

18 presents a fragment of x86 code that calculates the length of the IP options fields with 

both its naïve and its optimized version. Since this value is calculated by loading the IP 

header field, masking it, multiplying it by four and finally subtracting 20, we can 

compact most of the processing through the x86 LEA (Load Effective Address)  

instruction [40], which exploits the Memory Management Unit of the processor. 

movzx eax, byte ptr [ebx+14]
and   eax, 0xf
mov esi, 4
mul esi
mov esi, eax
add   esi, -20

movzx eax, byte ptr [ebx+14]
and   eax, 0xf
lea   ecx, dword ptr[ecx+eax*4–20]

Non optimized Optimized

 
Figure 18. Exploiting the Intel x86 instruction set 

On the other hand, we implemented special rules for optimizing frequent operations 

of packet-processing applications. For example, these often need to load a field from the 

packet header, perform some calculation and compare it with a constant value. However 

packets contain data organized in network byte order, which is big-endian, while x86 

uses the little-endian convention. This requires swapping the data contained in the 

packet buffer before starting the processing. Our solution, instead, uses the BURS to 

recognize those patterns of instructions and move the byte swapping operation to 
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compile time. In other words, whenever possible, instead of generating code for 

swapping the bytes of a register at runtime, the compiler swaps the constant during the 

compilation, thus producing more efficient code. A simple example of the use of this 

technique is presented in Figure 19, which refers to the control that determines if an 

Ethernet header is followed by an IP header. 

mov eax, word ptr [12]
shr eax, 0x10
bswap eax
cmp eax, 0x800

cmp word ptr [12], 0x8

Non optimized Optimized

 
Figure 19. Constant byte order swapping optimization 

Another common operation in packet-processing applications is represented by the 

multi-way branch, modelled after the switch-case construct of the C language. The 

back-end includes a switch lowering module that follows an approach similar to the one 

implemented in the LLVM compiler [41], which is able to select the best mapping 

algorithm, according to the cardinality and the density of the case set. 

Finally, the x86 back-end includes a specific phase that implements an efficient 

linking strategy for code associated to different NetPEs: direct linking avoids returning 

the control to the framework when a NetPE task ends, hence reducing the overhead 

introduced by the runtime environment. 

4.5.2. Octeon Back-end 

Before describing the backend for the Cavium Octeon network processor, a short 

description of the characteristics of the target architecture is presented, and more details 

on it are reported in Appendix A.2. 
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4.5.2.1. The Octeon architecture 

 

Figure 20. Internal Architecture of the Cavium Octeon Network Processor2 

Like most NPs, the Cavium Octeon tries to exploit the parallelism of typical packet-

processing applications: for this reason it features up to 16 MIPS-64 cores at 600 MHz. 

Each core has a private L1 cache, while the L2 cache and DRAM are shared. Although 

the L2 cache and DRAM are physically shared, the cores cannot communicate through 

the memory because of their private virtual memory space. Communication primitives 

between cores are provided by specific hardware mechanisms. The primary on-chip 

communication mechanism is the work, which is an entity created upon the arrival of a 

packet and queued into a specific hardware unit: the Packet Order Work (POW). Works 

have many attributes that determine how the POW schedules them to the cores. For 

example the programmer can specify different QoS levels associated with different 

                                                   

 

 

2 Copyright © 2000 - 2008 Cavium Networks. All rights reserved 

(http://www.caviumnetworks.com/OCTEON-Plus_CN58XX.html) 



4.5. Compiler Backends 

 

65 

 

 

kinds of traffic, since the unit receiving incoming packets can parse the packet header, 

providing a preliminary classification. The most important attribute is the group: in fact 

cores subscribe to groups and the POW schedules works to the cores according to the 

subscribed groups. When a core terminates its job, it can submit the work to another 

group, i.e. to another core, or send the packet out to a network interface. 

Besides the MIPS cores, the chip also contains supporting units and coprocessors for 

offloading some specific tasks. In particular, some of these deal with the reception and 

the transmission of packets, others are devoted to the management of pools of memory 

buffers, while coprocessors implement cryptographic and string matching 

functionalities in hardware. 

4.5.2.2. The compiler back-end for the Cavium Octeon 

When generating code for the Cavium Octeon, the NetVM compiler uses an Ahead-

Of-Time model and the output of the compilation process is represented by several 

assembly files, C listings and configuration files that must be further processed by the 

Octeon SDK, using the well known GCC compiler toolchain. The result is a native 

application running on the NP hardware with a minimal runtime environment, as the 

processor units are exploited to implement natively the NetVM model. In fact, as figure 

Figure 21 shows, the code generation process is not different from the x86 back-end 

(i.e. it implements the BURS instruction selection and global register allocation), while 

the mapping of native hardware functionalities deserves some more discussion and 

represents the most valuable part of this work. Particularly, this includes the mapping of 

the Exchange Buffer (i.e., the memory that contains the packet) on native hardware 

structures, and the mapping of the string matching coprocessor of the NetVM model. 
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Figure 21. Compilation phases for the Cavium Octeon backend 

With respect to the former, the Exchange Buffer can be mapped on the work 

structure of the POW unit. This enables NetPEs to be distributed on different cores that 

communicate through the native mechanism, in a way that is completely transparent to 

the programmer. Currently, our prototype exploits only one core, hence it implements 

dynamic NetPE linking as in the x86 back-end and exploits the POW unit only for 

receiving and transmitting packets from the external world. However the general 

mechanism is already in place and can be used as a starting point for future work aiming 

at fully exploiting the potentialities of multi-core processing. 

With respect to the second item, the NetVM model has a general string matching 

coprocessor that enables searching for groups of patterns in the packet payload. 

Patterns, which must be initialized before starting the program, are divided into groups 

identified with an integer ID, so that the coprocessor can search all the patterns 

belonging to a group at once and return multiple matching results to the caller. While 

the x86 back-end provides a software implementation based on the Aho-Corasik 

algorithm [42], the Octeon includes a hardware unit that is able to traverse graph-based 
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structures representing Deterministic Finite Automata (DFA) in memory, which can be 

used to perform both string and regular expression matching. With respect to the Octeon 

processor, the DFA graph must be translated into a binary image, which has to be 

loaded in a special external memory, the Low Latency Memory (LLM). During 

execution, the cores can submit a command to the DFA engine specifying the address of 

the packet payload and the address of the graph in the Low Latency memory to be used. 

The hardware unit automatically loads data from the packet memory and uses it to 

traverse the graph in the LLM, while searching for a match.  

Finally, the runtime environment for this back-end is very simple and it consists of 

an initialization routine (automatically emitted by the compiler) that initializes the 

processor units and instantiates the memory structure needed by the NetVM instance. 

The only task of the runtime environment is then to receive packets from interfaces and 

to pass them to the NetVM. 

4.5.3. X11 Backend 

4.5.3.1. The X11 Network Processor 

The Xelerator X11 network processor is based on a systolic array (actually a 

pipeline) with a synchronous dataflow architecture, which shares the concept of a 

systolic pipeline with its predecessor X10q [43]. Figure 22 shows an overview on its 

internal architecture.  

The processing elements are either VLIW processors called Packet Instruction Set 

Computers (PISCs) or I/O processors called Engine Access Points (EAPs). As shown in 

Figure 22a PISCs are arranged in blocks while EAPs are placed at fixed points between 

PISC blocks. EAPs essentially dispatch the computation to special purpose devices that 

can be used to offload part of the computation off the PISC pipeline. Such devices 

include TCAMs, counters, hardware for computing hash values, external SRAM, etc. 
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When a packet enters the pipeline, it is first partitioned into fixed size fragments. 

Thereafter, the pipeline processes the packet fragments using iterations of (1) PISC 

processing interrupted by (2) actions and look-ups orchestrated by EAPs. As a fragment 

traverses the pipeline, it carries an individual execution context containing the fragment 

itself, a register file, status registers, and other information that constitute the complete 

state of a program. Figure 22b shows the details of a PISC block. It is important to 

understand that one PISC acts on one packet fragment during exactly one cycle. During 

this cycle, the PISC can perform a set of parallel instructions on the fragment, before 

passing it on to the next element in the pipeline. 

P
IS

C
 0

Packet Buffer

Execution Context

PISC BLOCK

Packet Buffer

Execution Context

Packet Buffer

Execution Context

P
IS

C
 1

P
IS

C
 2

3

DATA FLOW

Look Aside 
Engine

NSE 
Engine

Look Aside 
Engine

Look Aside 
Engine

Meter 
Engine

Hash 
Engine

Counter 
Engine

TCAM 
Engine

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

PISC
BLOCK

E
A
P

RX
MAC

RX
MAC

RX
MAC

Optional TCAM    Optional RLDRAM, FCRAM, SRAM or LA 1 co-processor

Programmable Pipeline

TX
MAC

TX
MAC

TX
MAC

a) X11 Architecture b) PISC Block Detail  
Figure 22. X11 Internal Architecture Overview 

The parallelism of the pipeline is hardwired in the architecture itself. From one 

perspective, this makes the software handling of concurrency easy, since the execution 

contexts and PISCs are effectively isolated from each other. No explicit mechanisms 

such as threads or mutexes need to be adopted to protect accesses to these local 

resources. It is also easy to access external resources as long as this is made in a 

constrained fashion, primarily limited by the look-up bandwidth towards external 

engines. 

However, generic update of shared state is difficult to realize due to pipeline hazards, 

including Read-After-Write, Write-After-Write, etc. [44]. The reason is that the non-
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stalling nature of the synchronous pipeline makes it impossible for a program to wait 

indefinitely for an asynchronous mutex. However, for the X11, a mutex mechanism can 

be achieved by looping or by controlling the traffic scheduling into the systolic pipeline. 

If no hardware-provided mechanisms exists, all such shared accesses need to be 

scheduled in advance when configuring the pipeline for a specific application. 

Fortunately, the X11 architecture offers some means for providing more elaborate 

accesses to shared resources. This includes support for atomic read-and-increment 

operations both on the on-circuit counters engine as well as external RAM locations. 

From the compiler perspective, a X11 packet program consists of a number of 

instruction sequences that are laid out in the instruction memory of the pipeline. This 

memory is actually a two-dimensional matrix with rows and columns where the control 

flows unidirectionally and synchronously between columns, and branching occurs 

between rows. Because of the unidirectional execution flow, loops are not possible by 

definition; branches, however, are allowed. The layout of code in the instruction 

memory can be seen as a two-dimensional optimization problem, where a vertical 

column constitutes the instruction space of a single PISC, and the horizontal rows are 

instruction sequences. The execution context contains a row instruction pointer so that 

PISCs know which instruction to execute. Branching modifies the row instruction 

pointer but does not affect the horizontal flow of the program. 

The drawbacks to this programming model are tied to its advantages. First, looping is 

not allowed: programs requiring loops need to be unfolded to some limit that fits the 

pipeline. The X11 also provides a loopback path to let packets re-enter the pipeline if 

the program is longer than the number of pipeline stages allows. The number of pipeline 

passes, k, is statically configured at link-time and is limited since the throughput is 

proportional to 1−k . The operating frequency of the X11 systolic pipeline is 

dimensioned to allow a specific number of loops while still providing wire-speed. 



4. Implementing the NetVM Model 

70 

 

 

Moreover, in order to avoid reordering, all packets coming from the same input 

interface always undergo the same number of pipeline passes, even if the processing 

could terminate earlier for some of them. 

Second, there are few methods to share state between packets. In particular, it is 

difficult for information from one packet to influence the processing of another. This 

includes programs that adapt to traffic contents traffic, e.g., stateful packet filters. To 

provide for shared state between packets, one can use the support from the existing 

counter engine or implement some other, more elaborate mechanisms in the general-

purpose look-aside engines. It is also possible to communicate with the control plane, 

which in turn can re-program the pipeline by altering the state of look-up tables, but this 

approach has the obvious drawbacks of being limited in bandwidth and also may 

introduce race-conditions. 

4.5.3.2. A Back-end for the X11 NPU 

The architecture of the X11 backend is shown in Figure 23. 

The back-end translates the tree-based intermediate representation generated by the 

upper layers of the compiler into the LLIR, while mapping the accesses to virtual 

coprocessors on instructions that make use of the special purpose hardware features 

(e.g. TCAMs) available on the target architecture. This task is performed by the Bottom 

Up Rewriting System instruction selection phase. 

In contrast to traditional processors, the X11 NPU completely lacks the concept of 

function call; therefore a NetVM application composed of multiple NetPEs must be 

transformed into a single compilation unit to be laid out as a linear code sequence 

throughout the PISC pipeline. The X11 back-end compiler addresses this problem by 

performing an inlining step in the compilation process, where the code belonging to 

different NetPEs is linked together by replacing inter-module calls with jump 
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instructions. This inlining operation is possible only if the NetPE interconnection graph 

is acyclic, however this property is intrinsically ensured by the NetVM model. 

Afterwards, the intermediate representation is further optimized by removing 

redundant instructions that might have been generated during the instruction selection 

phase, then the resulting code is examined to detect independent instructions that are 

suitable to be merged in VLIW blocks. At the end of the compilation process, a 

resulting assembly file is created which can be used as an input for the X11 SDK tools 

that create the proper binary files for loading and execution. 
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Figure 23. Architecture of the X11 backend 

4.5.3.3. The Mapping Process 

Compiling a packet processing program for the X11 NPU does not differ 

significantly from compiling it for any other kind of processor, as long as only the 

generation of sequences of target instructions from high level constructs is considered. 

However, some constraints that are specific to systolic architectures, along with some 

characteristics of the X11 processor, suggest the adoption of specific compilation 
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techniques in order to best exploit the available hardware resources and to improve the 

chance of a program to be correctly and efficiently compiled. 

This section explores the major problems related to the efficient mapping of NetVM 

applications on the X11 architecture and presents the most innovative aspects of the 

NetVM compiler infrastructure. 

Handling Loops 

Since backward pointing branch instructions are forbidden, systolic array processors 

are characterized by an "upstream to downstream" execution model, where the control 

flow is driven by data flowing through the pipeline and cannot be redirected to a 

previous stage. This translates to the impossibility of mapping generic loops on a 

systolic array, unless their maximum number of iterations is bounded and known at 

compile time, so that they can be completely unrolled and laid out as a linear sequence 

of instructions. However, even in this case some practical problems arise: the theoretical 

upper bound on the number of iterations may be so large that the resulting overall 

instruction count could exceed the number of available stages even when using the 

loopback path as described in Section 4.5.3.1. 

If such considerations apparently pose a strong limitation on the kinds of applications 

that can be successfully and efficiently mapped onto a systolic array network processor, 

it should be noted that uncontrolled loops are not frequent in standard forwarding 

programs (either L2 or L3) with the exception of some protocols (e.g., MPLS stacking 

or IPv6 extension headers [25]). In such cases the problem can be overcome by limiting 

the maximum number of loop iterations in the source program to a fixed value. Such 

considerations point out that the theoretical limitation of systolic arrays in handling 

loops may not be so relevant in practice. 
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Keeping the State of the Application 

The NetVM model uses different memories to keep the state of an application. In 

particular, state information local to a NetPE is stored in the NetPE local register file 

and local data memory, the former keeping temporary values while the latter is used for 

static values as well as complex structures. Vice versa, the state that is local to a packet 

is stored in the packet buffer and a special buffer called the "info memory", i.e. a 

memory segment that allows subsequent NetPEs to communicate between them. 

On the X11 side, the execution context is represented by the packet memory and a 

register file, while persistent state must be kept in externally attached memories that are 

accessed through the EAPs. As a matter of fact there happens to be a significant 

parallelism between the NetVM model and the X11 processor when it comes to data 

associated with a packet. In particular, the X11 packet memory and register file allow 

indirect addressing and can be used to map the NetVM packet buffer and the info 

memory. Besides, a portion of the register file can be allocated for keeping intermediate 

results as they are computed in the NetPEs, as well as local register values.  

On the other hand, the two platforms differ in the way permanent data (i.e. the state 

that survives across different packets) is treated. As detailed in Section 4.5.3.1, there are 

constraints on how multiple, concurrent accesses to the same external memory location 

can be made. Section 4.5.3.3 reports how in very specific cases the compiler is able to 

handle this problem while still ensuring the safe update of shared memory locations. 

Mapping NetVM Coprocessors  

The NetVM model allows complex operations and functionalities to be represented 

as invocations to virtual coprocessors. The back-end maps them on the corresponding 

hardware features (if available on the physical device) in order to maximize the 

efficiency of the resulting code. In particular, on the X11 processor this usually 
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translates to generating instructions that send and receive data to/from the EAPs and 

declaring which engine operation should be performed.  

A look-up coprocessor that allows the programmer to associate 32-bit keys to 32-bit 

values was considered as a proof of concept. On the X11 the requested operation can be 

performed by the integrated TCAM module. Since the same hardware unit must 

possibly be shared with other instances of the same coprocessor (in a different NetPE) 

or contain other unrelated content, the compiler provides a thin hardware abstraction 

layer to split the TCAM into multiple tables. This is achieved by dedicating a portion of 

the look-up key space to hold a table number. 

NetVM coprocessors wrap a well-defined interface around a usually complex 

algorithm; the compiler has the twofold task of translating the algorithm itself and 

adapting the interface to the actual hardware units employed. While the latter task is 

achieved by the compiler, the former might prove impossible due to possible limitations 

of the hardware platform. In particular, if the target architecture does not provide the 

specific functionalities exposed by a virtual coprocessor, a software emulation must be 

performed. However, this might not always be possible due to restricted amount of 

primitives provided by the hardware and limitations imposed on the instruction count. 

 Exploiting the Features of the Hardware Architecture 

The previous section explored the problem of mapping a virtual coprocessor (i.e., a 

specialized macro-functionality) defined by the NetVM model on real hardware. This 

section presents the dual problem, i.e., mapping generic NetIL code to some specialized 

modules provided by the hardware. 

Apart from the case where the source language exposes high level constructs that 

find a natural mapping on specific hardware functionalities, the problem is in general 

extremely complex: hardware modules usually implement complex algorithms that, in 

order to be efficiently translated, must first be recognized in the source program. 
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The switch-case provides a simple example of an easily recognizable high-level 

construct. The instruction count of a traditional implementation based on a linear search 

might grow in complexity with the number of possible destinations, potentially using an 

extensive portion of the pipeline. However, on the X11 the same behaviour can be 

obtained by performing an associative look-up that uses the on-board TCAM, costing 

effectively one pipeline stage only, independently from the number of possible 

alternatives. 

An unintended consequence of extensively using this mapping technique might be 

the over-subscription of limited hardware resources. In particular, there are limitations 

in look-up bandwidth and also the fact the EAPs are present at specific stages in the 

pipeline. In this case the compiler should emit code that uses other pipeline resources 

such as the PISC processors or different external units. Although deciding when to do 

this is a complex optimization problem, the compiler tries to solve it through a simple 

heuristic that works well in the average case. 

Making the specialized functionalities provided by the X11 hardware automatically 

available to the program requires in the general case more effort than mapping the 

switch-case construct. A good example derives from the problems related to the 

concurrent update of shared information mentioned in previous paragraphs. If the state 

to be updated is an integral value, the compiler can make good use of the X11 support 

for atomic increment instructions, thus becoming able to overcome concurrency issues 

in a limited set of cases. A common example is keeping counters in external memory, 

e.g. for statistical purposes. 

A counter increment operation in itself is not atomic as it is necessary to fetch the old 

value, increase it and store the newly computed result at the same offset. However if 

this procedure is not performed atomically by the hardware it becomes possible for two 

consecutive packets to read the same value from memory with the net effect of 
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incrementing the counter once instead of twice. To overcome this issue the compiler 

uses the BURS-based instruction selector which is able to recognize if specific locations 

of the data-memory are accessed through this pattern of operations, and to map them on 

the special purpose atomic increment instructions provided by the hardware. 

Depending on how the source code is written, it can happen that a pattern ends up 

split across different statements. Since the BURS operates on a single IR expression tree 

at a time, in this case the recognition mechanism does not work. No control on the 

source code form can be assumed, so this issue would result in low reliability of the 

compilation process if left unchecked. Vast improvements can be made by processing 

the intermediate representation with appropriate optimization algorithms, such as 

algebraic reassociation. These algorithms can rearrange subtrees in the IR so that the 

semantic meaning of the program is preserved, but providing the instruction selector 

with deeper trees that are more likely to contain recognizable patterns. This way the 

BURS can operate successfully even if the related instructions were originally scattered 

across a region of the source listing. 

In any case, it must be pointed out that even though such techniques work well in 

very specific cases, their general validity still needs to be proven, since they are tuned 

on patterns of instructions and not on algorithms. In particular, even for the simple 

example of counters, the programmer could update a specific memory location in 

several exotic ways, preventing the BURS to recognize the sequence of instructions as a 

predefined pattern. We believe that in order to deploy a general algorithm recognition 

technique, more specialized analyses of the code should be performed. 

VLIW Instruction Merging 

Being VLIW processors, PISCs allow up to four independent operations to be 

executed at the same time, in order to exploit instruction-level parallelism. These can be 

(1) an ALU operation, (2) a move for copying words of up to 32 bits between different 
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locations of the register file and the packet memory, (3) a load offset operation for 

indirectly accessing the register file or packet data, and (4) a branch. 

When generating assembly code, the compiler should try to merge multiple 

instructions in single VLIW words, taking care appropriately of data and control 

dependencies. Several algorithms are described in literature for handling such task in an 

optimal way, e.g., trace scheduling [45]. The compiler currently implements a simple 

algorithm that works only on straight-line code fragments (i.e., basic blocks) and does 

not perform any instruction reordering before merging. This provides good results, even 

though it is a widely known result that the amount of instruction-level parallelism 

present in a program is limited when considering only basic blocks, even more if 

instructions are never reordered. It is likely that implementing a more aggressive 

strategy would improve the emitted code quality significantly. 

Automatic Computation of Data Size 

While the NetVM model allows to fetch and store any data size (≤ 32 bits), registers 

are 32-bit words. This is a problem for the X11 processor that works natively on 16-bit 

words because of the larger overhead required to perform 32-bit operations, while often 

these can be correctly carried out using only 8 or 16 bits. 

Although this is clearly a limitation of the NetVM model that does not explicitly 

support different data sizes, we decided to implement an heuristic algorithm in the X11 

back-end that tries to assign to each NetVM register the optimal, minimum size while 

preserving the program semantics. In the long term, this issue points out the necessity of 

a revision of the NetVM model that will involve the addition of new NetIL opcodes to 

provide the NetVM with hints about the appropriate data size. 
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4.6. Conclusion 

This Chapter presented the design and implementation of an optimizing multi-target 

compiler and run-time system for the NetVM model, in order to demonstrate its 

capability to enable the portability of packet processing applications, while ensuring an 

efficient mapping on a wide range of heterogeneous target platforms.  In particular, the 

compiler allows the translation of NetIL programs to native code of three different 

architectures, exploiting the hardware features available on real network processors. 

Even if the problem of partitioning applications across multiple symmetric execution 

cores (e.g. like those of the Cavium Octeon network processor) has not been taken into 

account, experimental results reported in Chapter 7 show that the generated code has 

performances often better than those obtained from hand-written programs compiled 

with state-of-the-art general-purpose compilers. 
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5. Assessing the programmability of 
the NetVM 

5.1. Introduction 

In order to assess the capability of NetVM to be an effective platform for the 

development of real-world applications, a clone of the popular Network Intrusion 

Detection Sensor3 (NIDS) Snort [46] has been designed and implemented for the 

NetVM. The choice of this type of application is due to its requirements in terms of 

intensive packet-processing capabilities, dealing with all protocol layers and performing 

deep packet inspection. In addition, IDSs are suitable for hardware acceleration because 

                                                   

 

 

3 A Network Intrusion Detection Sensor (NIDS), briefly IDS, is a network monitoring tool 

designed to detect unwanted attempts at accessing, manipulating and/or disabling computer systems 

on a network 



5. Assessing the programmability of the NetVM 

80 

 

 

of their extensive use of regular expressions and lookup tables, which are often assisted 

by specialized coprocessors on physical platforms.  

In this Chapter, the architecture of the application is presented, showing that NetVM 

provides a programming model that is general enough for supporting the development  

of very complex packet processing applications that can be seamlessly ported onto 

extremely different platforms. Indeed, experimental results reported in Chapter 0 show 

that the Snort clone for the NetVM can be executed without any change on two 

heterogeneous target architectures (namely the Intel x86 and the Cavium Octeon), with 

performances that are comparable with those of the original application running 

natively. 

5.2. Related Work 

The implementation of a complete Snort-like intrusion detection sensor on a network 

processor was first explored by [47] that presents a compiler for generating C code from 

a set of intrusion signatures to be executed on an Intel IXP1200 NPU. The choice of 

generating C code was dictated by the need of exploiting the available development 

toolchain. However, this solution requires recompiling the software offline (where 

compilers are available), and then the updated code must be downloaded to the physical 

platform. This solution is efficient in case of “stable” software, but it prevents the 

possibility to have live updates for the software (e.g. updated security rules). Our 

solution is also based on a compiler for translating a rule-database into executable code, 

but the generated program is represented through an abstract assembly language that has 

to be further translated into the target binary code by the NetVM JIT compiler. 

Since network intrusion detection heavily relies on deep packet inspection 

functionalities, such as string and regular expression matching, great effort has been 

directed towards solutions for optimizing and offloading such processor intensive tasks 



5.3. The Snort Intrusion Detection Sensor 

 

81 

 

 

through efficient algorithms and specialized hardware modules or coprocessors 

[48][49][50][51][52][53]. Another approach is using optimized algorithms targeted over 

the physical hardware platform; for example, [54] proposes a modified version of the 

Aho-Corasick [42] string-matching algorithm that can be executed in parallel on several 

microengines of the Intel IXP1200 network processor. 

Differently from other research projects, the proposed approach aims at validating 

the entire application instead of speeding up specific functions such as only string and 

regex matching. 

 

5.3. The Snort Intrusion Detection Sensor 

Snort [46] is the implementation of a passive network IDS that is the de-facto 

reference in this class of applications; hence it seemed an obvious choice to design our 

own IDS by keeping compatibility with its rules and alerting formats. In this way our 

IDS would get immediate benefit from the huge database of already-existing attack 

signatures, which would also offer an excellent testing environment. 

Snort is currently capable of performing real-time traffic analysis and packet logging 

on IP networks. Its capabilities include protocol analysis and content searching, which 

can be used to detect a variety of attacks and probes, such as buffer overflows, stealth 

port scans, CGI attacks, SMB probes, OS fingerprinting attempts and many other 

security threats. 

Snort uses a database of rules to describe the known attacks. Each rule is written on a 

single line of ASCII text through a flexible description language and is divided into two 

logical sections: the header and the options. The rule header contains an action, a 

protocol, source and destination IP addresses and netmasks, and source and destination 

transport-protocol level ports. The rule options section contains a series of keywords, 
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which can be used to specify additional tests that should be performed on a packet, such 

as searching for a particular string or a regular expression in the payload, or checking if 

the “code” field of an ICMP packet matches a particular value. If all the tests specified 

in a rule are verified, then the corresponding action is undertaken (e.g. sending an alert 

an/ord logging the packet).  For example, the following rule: 

 
log tcp any any -> 10.1.1.0/24 80 (content: "GET"; msg: "HTTP 
GET";)  

 

logs every packet coming from any host and directed to port 80 of any machine of 

the 10.1.1.0/24 network containing the ‘GET’ string. Such packets will be logged with a 

message saying “HTTP GET”. 

The architecture of Snort is highly modular: it includes a Decoder module, which 

aims at locating protocol offsets and field values, a set of preprocessors that are used to 

normalize the packet when needed (e.g. an SSL decrypter in order to allow the 

following code to perform tests on the content, an IP defragmenter module, etc.), and 

the detection engine, which is the core of the application, where incoming packets are 

matched against the rule database in search of a possible security threat.  

The detection engine will use several strategies for reducing the amount of checks 

that must be performed on the packets. For example, Figure 24 shows an optimization of 

the content matching module based on the TCP destination port contained in the rules. 

In this example, content matching tests are grouped according to the TCP destination 

port contained in the packet, i.e. if the tcp.dstport is equal to 80, only the first, second 

and fourth rules (hence keywords “POST”, “HEAD” and “GET”) need to be tested by 

the content module. In case this control matches, these rules are set as “potentially 

matching”, and the processing continues with further steps that aim at checking all the 

field rules. However, it is evident how this strategy (which in fact is more elaborated 
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than in this example) can reduce the amount of checks that needs to be performed on 

every packet. Besides, using similar techniques, rules can also be grouped by other 

packet-specific properties, like the source and destination ports for TCP and UDP 

packets, creating even smaller subsets. 

More details on the Snort IDS can be found in [46].  

Rules Example
=============

log tcp any any -> 10.1.1.0/24 80 (content: “POST";  msg: "HTTP POST";)

log tcp any any -> 10.1.1.0/24 80 (content: “HEAD";  msg: "HTTP HEAD";)

log tcp any any -> 10.1.1.0/24 21 (content: “PORT";  msg: “FTP PORT";)

log tcp any any -> 10.1.1.0/24 any (content: "GET";  msg: "HTTP GET";)

Generated code (content matching module)
========================================

switch (tcp.dstport)

{

case 80: CheckPattern (“POST”, “HEAD”, “GET”)

break;

case 21: CheckPattern (“PORT”, “GET”)

break;

default: CheckPattern (“GET”)

break;

}  
Figure 24. Rules optimization in Snort. 

5.4. Architecture of the NetVM IDS Sensor 

The IDS sensor for the NetVM is not a direct port of Snort; the two applications 

share almost no lines of code. Among the reasons for this choice are the lack of a C 

compiler for the NetVM and, more important, the belief that the C language is not 

always the best choice for highly packet-oriented processing applications. Our solution 

is based on a custom compiler that takes Snort rules and creates NetVM assembly. Even 

lthough the inputs and outputs of the application are the same as those of Snort (for 

instance, Table 2 shows the list of Snort keywords supported in our IDS sensor), its 
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internal architecture had to be redesigned from scratch in order to take full advantage of 

the NetVM paradigm, which tries to exploit the intrinsic modularization seen in packet-

processing applications that are usually made up of several short and independent tasks. 

As the Snort rule format basically specifies tests that might involve the different 

protocols present in a packet, we decided to create different modules, instantiated on 

different NetPEs. Tests on each protocol are performed in the NetPE responsible for it, 

with the exception of some special functions (such as packet analysis and pattern 

matching) that are not associated to a single protocol and that are allocated to specific 

NetPEs. For instance, a rule such as “log tcp any any -> 10.1.1.0/24 80 ” 

will involve generation of code in different modules: the IP one will check that the 

destination address matches; the TCP module will be involved for checking the value of 

the TCP destination port, and so on. The rule will match only if all the tests are verified. 

The final architecture is shown in Figure 25. 

Table 2. Snort Keywords Supported by the NetVM IDS Sensor 

Keyword Description 
msg Message to use when logging 
sid Unique rule identifier used to keep track of developed rules 
rev Rule revision, used by Sourcefire 
classtype Type of attack the rule detects 
reference References to well-known application exploits the rule detects 
itype Search for a particular ICMP Type 
icode Search for a particular ICMP Code 
icmp_id Search for a particular ICMP ID 
icmp_seq Search for a particular ICMP Sequence number 
dsize Payload length 
content Search for a string in the packet payload 
depth Limit string search to a certain number of bytes 
offset Skip a certain number of bytes before string search 
within Limit string search to a certain number of bytes after a preceding string match 
distance Skip a certain number of bytes when searching after a preceding string match 
nocase Match a string case-insensitively 
flow Match a specific state/direction of a TCP connection 
pcre Search for a regular expression in the packet payload 

The NetPE abstraction offers the possibility of an excellent modularization: each 

module is almost independent, and performance can be incremented by simply 

improving the code generation for NetPEs that represent the bottleneck, implementing 
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ad-hoc strategies to minimize the number of tests to be performed on a packet. For 

instance, some rarely used modules (e.g. ICMP counts for a few rules in the entire 

ruleset) use a very simple algorithm (linear search), while others implement smarter 

strategies. Global optimizations can also be implemented in the NetVM framework to 

be able to reduce the size of the target code. 

This does not prevent global optimizations implemented in the NetVM framework to 

be able to reduce the size of the target code. 
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Figure 25. Architecture of the NetVM IDS sensor 

As told in Chapter 2, NetPEs communicate among themselves through “exchange 

buffers”, i.e. meta-packets that, besides the packet buffer, contain additional data (e.g. 

time stamps) and a dedicated area called “info partition” where NetPEs can store state 

information that flows through the NetVM following the same path of the packet. Each 

module composing the IDS exploits the “info partition” for keeping the matching state 

of every rule and for communicating it to subsequent modules.  In particular, as Figure 26 

shows, the info partition is divided in two parts: the former contains a bit-vector, in 

which every bit represents a rule, while the latter is further organised into several 32-bit 

slots, each one containing data extracted from the packet, such as source IP address, 

port, etc.. When a packet enters the application, the bit vector is initialized to zero (i.e., 
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no match) and the content matching module selects the group(s) of rules that are 

suitable for further processing by checking the proper patterns and by turning the 

corresponding bits to one. Then, the following modules should refine these controls by 

checking that all the conditions of each rule are verified. As soon as one condition does 

not match, the corresponding bit in the rules bitvector is reset; at the end, only the rules 

that have this bit set are matched. 
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Figure 26. Exchange buffer: packet data and info partition 

5.4.1. Packet-processing workflow 

In our architecture, the processing of a new packet starts with the Protocol Analysis 

module that extracts information on the protocol headers that are contained into the 

packet and records the starting offset of the payload (if any). This piece of information 

is stored inside the “info partition” of the exchange buffer and is therefore made 

available to all the following modules in the chain. The next module is dedicated to 

Content Matching, which does some cross-layer checks in order to reduce the amount of 

strings to be tested on each packet and that matches the payload against a set of static 

patterns and regular expressions specified in the source rules. Since this task is the most 

processor-intensive, it relies on string and regular expression matching coprocessors 

provided by the NetVM architecture, which on general purpose platforms are emulated 

by software. The location of this module, almost in front of the processing chain, is due 

to performance reasons. In fact, the search is carried out by a modified version of the 

well-known Aho-Corasick algorithm [42] that allows several patterns to be searched at 
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the same time. As a result, if a pattern is found inside the payload, only the subset of 

rules based on it needs to be extensively verified. 

Further modules will refine the processing by performing only the tests that are 

required on the subset of rules that have been selected as “possibly matching” in the 

previous modules. For instance, the IP, TCP and UDP modules group together all the 

rules that have the same addresses/ports, so that they only have to check each different 

combination of IP and netmask once. Another optimization consists in testing the 

destination address/port first, and then, if it matches, the source address/port. This 

approach is justified by the fact that, in real rule-sets, most rules have an unspecified 

(i.e.: “any”, in Snort terms) source address and a precise IP as destination address, 

which stems from the fact that attacks come from anywhere, while the addresses of the 

servers in the internal network are well-known. Testing if the packet contains a precise 

destination address allows discarding a large number of packets immediately, reducing 

the ones that need to be further processed in order to detect a match.  

The Ethernet module only checks if the packet contains IPv4 or IPv6, and sends it to 

the proper module, or just discards it in case the network-layer protocol is not 

supported. This module is extremely simple and does not provide any rule matching 

functionalities, since Snort rules do not support data-link layer tests (e.g., MAC-address 

based filtering). 

The IPv4/IPv6 modules implement the tests over source and destination network 

addresses, while the TCP and UDP modules take care of checking the source and 

destination TCP/UDP ports of the packet, and the ICMP one checks all the possible 

ICMP options, which involve tests on the ICMP type, code, ID and sequence number. 

The Connection Tracking and Connection Status Matching modules perform stateful 

TCP connection tracking, distinguishing who initiated the connection (i.e., server vs. 

client), the direction a packet is travelling in (i.e., from server to client or vice-versa) 
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and the state of the connection (i.e., established or still in the handshake phase). This 

task is performed with the aid of a lookup coprocessor that acts as an associative 

memory holding information on the current state of active TCP connections. Finally, the 

Payload module handles the matching of non-content payload-related options, such as 

tests on the payload size. 

Connections among the various PEs are organized so that each incoming packet only 

traverses the subset of PEs dealing with the protocols it contains. This could be easily 

achieved through a scheme modelled after the TCP/IP protocol stack, as shown in 

Figure 4. This architecture has many advantages. First, each protocol is analysed only 

once. Second, the knowledge of a protocol is embedded in a single place, making the 

debugging easier and improving the handling of a protocol. Furthermore, the addition of 

a new protocol simply requires a new NetPE to be inserted in the chain (and the 

compiler to be updated to generate the new code for the NetPE). Third, the number of 

traversed NetPEs is small, i.e. packets traverse only NetPEs responsible of protocols 

that are present in the packet (i.e. an UDP packet will not traverse the NetPE dedicated 

to TCP), with a clear advantage from the performance viewpoint. Fourth, the 

architecture is suitable for pipelining. At the moment, the application handles one 

packet at a time, but potentially it could handle more packets if NetPEs can be 

instantiated on different physical execution units (e.g. in case of the Octeon multicore 

chip). 

5.4.2. The code generation process 

The traditional approach in intrusion detection applications is usually based on 

iterating over the rules that are represented in memory as complex data structures. For 

our IDS we decided to follow a different approach to the problem. In our 

implementation, rule checks are directly embedded in the code. In particular, instead of 

producing static programs that iterate over data structures in memory, the code directly 



5.5. Conclusion 

 

89 

 

 

implements all the checks needed for matching packets against specific portions of the 

rules. Such a choice is based on the consideration that rules data remains constant 

throughout the execution of the program and such information can be exploited in order 

to emit checks (i.e. branch instructions) based on constant values (instead of checks 

based on values loaded from memory), producing more efficient code and opening the 

way to further optimizations. Since the resulting program is almost totally created at 

run-time, the entire code must be regenerated in case some rules change. 

5.5. Conclusion 

In this Chapter the implementation of a network intrusion detection sensor for the 

NetVM platform has been presented, in order to demonstrate that the NetVM 

programming model is suitable for creating complex packet-processing applications.  

The current status of the IDS sensor is not as mature as the original Snort. For 

instance, some features (such as the IP defragmenter and TCP flow reassembly) are 

missing, and some application-layer keywords in the rule language are not supported. 

However, the objective was not to create a perfect clone of Snort, but to implement a 

reasonable proof-of-concept application for demonstrating the validity of the NetVM 

model. From this point of view, results are interesting, since NetVM primitives (i.e. the 

NetIL instruction set and the abstraction provided by virtual coprocessors) allow to 

effectively handle packet processing at all networking layers. Moreover, experimental 

results reported in Chapter 7 show that the runtime performances achieved are almost 

comparable with those of the native Snort.  

On the other side, it is worth noting that NetIL is not a suitable language for 

programming the NetVM by hand, since it sits at a too low level of abstraction for a 

programmer (i.e. it is comparable to an assembler language), and its stack-based nature 

strongly limit its readability. However, this should not be considered a limitation of the 
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NetVM model, which is by design based on a mid-level programming language and 

aims at being an ideal target for several high-level programming languages.
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6. Flexible Generation of Packet 
Filtering and Field Extraction 
Programs 

6.1. Introduction 

In order to demonstrate the possibility of decoupling the logic of a packet processing 

application from the knowledge of the actual format of the supported network protocols, 

while still ensuring runtime performances that are comparable with those of equivalent 

applications relying on hardcoded protocol descriptions, a compiler for the dynamic 

generation of packet filtering and field extraction programs has been designed and 

implemented. 

Both filtering and field extraction rely on packet demultiplexing, i.e. a functionality 

for recognizing the full sequence of protocol headers contained in network packets. For 

example, a filter on “TCP” would first check whether the data-link frame contains an IP 

header, then it would check the IP header for a TCP header indication. Finally, if such 

sequence of conditions is completely satisfied, the corresponding action is triggered. 
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Similarly, extracting the values of the source and destination ports of the TCP header 

requires to first check if packets contain a TCP protocol header (i.e. a filter on TCP is 

applied) and then the actual values of the desired fields can be loaded from the packet 

buffer and made available to the user for further processing. 

Demultiplexing programs implementing high level filtering predicates are usually 

generated by a compiler through routines, hardcoded in the compiler itself, that emit a 

sequence of checks on the values loaded at specific offsets of the packet buffer. For 

instance, such approach is taken by the libpcap library, which provides an API for the 

translation of simple filtering rules into a program for the BPF virtual machine [55]. The 

lack of flexibility in supporting new protocols, which requires the compiler to be 

extended (i.e., rewritten), represents a problem from the maintainability point of view. 

For example, in order to support a previously unsupported protocol, the compiler must 

be modified in several points: (i) new tokens representing the names of the new protocol 

and its fields must be added to the lexical scanner of the parser, (ii) the code generator 

routines must be extended for generating the proper checks on header fields, and (iii) 

already working routines must be made aware of the newly supported protocol. 

The compiler presented here overcomes such limitations by decoupling the code 

generation process from the knowledge of the format of protocol headers, which resides 

in an external NetPDL database. In particular, NetPDL protocol descriptions are 

translated into packet demultiplexing programs that implement high level filtering rules 

expressed in the Network Packet Filtering Language (NetPFL). The generated code can 

be directly executed on any implementation of the NetVM virtual machine. 
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6.2. Generating Packet Filtering Programs from 
NetPDL and NetPFL 

In our compiler, we consider a packet filter as a program composed by two main 

sections: (i) a packet demultiplexing section, where the sequence of the headers carried 

by each packet is analyzed looking for a specific protocol, and (ii ) a section where some 

conditions on one or more fields are evaluated and the corresponding action is triggered. 

In other words, the packet filter looks for the first occurrence of the specified header 

inside the packet and then checks some conditions on one or more of its fields, as shown 

in Figure 27.  In our discussion we will focus mainly on packet filtering, because field 

extraction programs follow a scheme that is very similar to the one described, except 

that field values are loaded from the packet buffer and used by other modules instead of 

being evaluated by filtering conditions. 

eth ip tcp ...eth ip tcp ...

eth

arp ip

tcp
udp

icmp

(a) Packet Demultiplexing (b) Check on protocol fields

tcp.dport == 80 returnpacket

Packet contains TCP

no yes

return packetdrop packet

dport == 80?

Incoming packet

NetPFL Rule

 
Figure 27. Filtering program as the composition of (a) a packet demultiplexing section and (b) a section for 

checking conditions on the target protocol fields 

6.2.1. The Protocol Encapsulation Graph 

Considering a NetPDL database, encapsulation relationships that exist between 

protocols can be used to identify a directed graph G(V,A), where each node V represents 
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a protocol in the database, and an edge e(x, y) is directed from the node x to the node y, 

if the protocol y can be encapsulated into the protocol x. We call such a graph a Protocol 

Encapsulation Graph, or encapsulation graph.  

The encapsulation graph exposes the layered nature of network protocols and has 

some similarities with the concept of Protocol Graph, i.e. a directed acyclic graph 

employed for describing the use relations existing between the different components of 

a multi-protocol communications system [56]. However the encapsulation graph allows 

paths between nodes to be cyclic, making evident the cases of protocols that can be 

tunneled, like IPv4 encapsulated in IPv4, IPv6 in IPv4 and vice-versa, or cases like an 

ICMP message encapsulated in IPv4, which carries a further IPv4 header (belonging to 

the packet that generated the message), and more. 

Figure 28 shows how complex an encapsulation graph can be. In particular, it shows 

the encapsulation graph corresponding to a subset of the current NetPDL database, 

containing only some protocols up to the transport layer. 
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Figure 28. Protocol Encapsulation Graph. 

6.2.2. Packet Demultiplexing 

In the proposed model, the first section of a generic packet filter needs to parse the 

sequence of headers, while looking for a specific protocol. Since the encapsulation 

graph represents the union of all the demultiplexing paths that lead to every protocol 

defined in a NetPDL database, we can leverage such information by considering only 

the set of paths that lead to the protocol we are looking for, i.e. a sub-graph of the 

encapsulation graph. Since the characteristics of the encapsulation graph ensure that a 

single source node always exists (i.e. the node corresponding to the startproto protocol), 

a reverse postorder  visit starting from a generic node N will identify a subgraph that is 

the union of all the paths leaving from the startproto node, leading to N itself. 
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Procedure GenFilterCode(Node n, Expr e)
Begin

TargetProtocolNode = n
For each p in EncapsulationGraph

p.visited = false

RPO_Visit(n)
If (e)

GenCodeForSection(TargetProtocolNode.Format)
GenCodeForExpr(e)
If (!TargetProtocolNode.successors.empty())

GenCodeForSection(TargetProtocolNode.Encapsulation)
End

Procedure RPO_Visit(Node n)
Begin

If (n.visited)
Return

n.visited = true
For each p in n.predecessors

RPO_Visit(p) 
GenCode(n)

End

Procedure GenCode(Node n)
Begin

If (n ≠ TargetProtocolNode)
GenCodeForSection(n.Format)
GenCodeForSection(n.Encapsulation)

End
 

Figure 29. Code Generation Algorithm. 

Given such considerations, our strategy for generating a packet filtering program 

through NetPDL is presented in the algorithm of Figure 29. The code generation process 

is driven by the GenFilterCode()  procedure that accepts as arguments the node 

corresponding to the protocol on which the source filter is set (e.g. “ip ”), and an 

optional expression evaluating some of its fields (e.g. “dst == 10.0.0.1 ”). Briefly, 

the algorithm performs a reverse postorder visit on the encapsulation graph starting 

from the target node (i.e. the node relative to the protocol to be searched). Then, it 

generates the code related to the format (which is required in order to be able to locate 

every field of the selected protocol) and the encapsulation (which is required to be able 

to link the current protocol to its successor nodes) sections, for all the protocols 

encountered during the visit. In particular, the encapsulation section can be modelled as 

a multi-target branch instruction, i.e. a generic switch-case construct, which evaluates 

the content of some header fields, and where each branch leads to the code generated for 
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the protocols corresponding to the successor nodes of the one being visited, while a 

special branch is directed to a “filter-false” exit label for indicating the absence of a 

match. Some exceptions arise for the target protocol (i.e., the protocol we want to 

locate), in which the code has to be generated in a slightly different manner. For 

example, if the source filtering expression evaluates some fields of the target protocol 

header, the GenCodeForSection()  procedure is invoked in order to generate a 

portion of code for locating them, while the GenCodeForExpr()  generates the final 

check. Furthermore, if the target protocol node has any successors (the encapsulation 

graph can contain loop) the GenCodeForSection()  procedure translates its 

encapsulation section, giving the opportunity to find a match  in subsequent tunneled 

instances of the same protocol header, even if the current header does not match the 

filter. For instance, in case of an IPv4 in IPv4 tunneling the external IP header may not 

match the filter, while the internal one can. 

Figure 30 shows the results of the two phases of the code generation process for the 

NetPFL rule defined in the example: (a) shows the portion of the encapsulation graph 

representing all the demultiplexing paths that lead to IP, while (b) shows the 

representation of the generated code as a control flow graph.  

The sample filter is matched when the first IP header containing a destination address 

field equal to the 10.0.0.1 is found. If the first IP header does not match the filtering 

condition, the program continues to parse the packet by following the demultiplexing 

paths of the subgraph until it finds a match, or it reaches a terminal node (e.g., the end 

of the packet). 
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Figure 30. (a) Demultiplexing Paths and (b) Control Flow Graph for the filter “ip.dst == 10.0.0.1 
returnpacket ” 

6.2.3. Locating header fields 

In NetPDL, every field declaration not only identifies a specific sequence of bytes 

into the packet buffer, but implicitly tells where the next field will start. In particular, 

the offset of a header field defined in a NetPDL database is not specified explicitly, but 

it can be implicitly derived by adding the offset and the size of its preceding field, as in 

(4). 
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Offs(Fieldi) = Offs(Fieldi-1) + Size(Fieldi-1)  (4) 

 

This rule can be used to map the protocol format into a sequence of instructions for 

identifying the actual offset and size of every field. Unfortunately, most protocols 

include fields whose size is known only at run-time, which prevents this computation to 

be performed at compile-time. Besides, since different packets can take different 

demultiplexing paths, even the starting offset of a specific header cannot be known in 

advance. Given such considerations, the cleanest way for generating a portion of code 

for locating header fields inside packets is to translate the entire <format>  section of a 

NetPDL description to a sequence of instructions that implement the scheme described 

in (6), and to delegate the task of removing useless and redundant code to a series of 

optimization steps. Such choice is based on the fact that the evaluation of the content of 

some fields performed in encapsulation and filtering conditions can be treated like uses 

of particular variables (i.e. the fields). Using simple data-flow analyses, the instructions 

defining variables that will never be used can be detected and safely removed. 

Moreover, the definitions of fields of fixed size can be subject to the application of 

constant propagation techniques. Section 6.3.3 will provide more details on such topic. 

6.3. The Compilation Process 

The techniques described in the previous section have been implemented in a 

compiler for the translation of NetPFL rules into executable code for the NetVM virtual 

machine, through the exploitation of the information on the format of network protocols 

resident in an external NetPDL database. The compiler adopts a traditional architecture 

that includes a front-end component that translates the source program in a more 

manageable intermediate representation (IR), an optimizer, and a back-end for the 

generation of the target executable code. 



6. Flexible Generation of Packet Filtering and Field Extraction Programs 

100 

 

 

6.3.1. Code Generation 

In a first phase the compiler parses the NetPDL protocol database by gathering the 

names of protocols and fields. At the same time the encapsulation graph is created for 

modelling the encapsulation information defined in the NetPDL description. Then the 

source NetPFL rule is parsed, while ensuring that the filtering expression refers to 

available protocols and fields. If the filtering expression is made up of terms related to 

different protocols, the parser also tries to group together sub-expressions that include 

terms referring to the same protocol. This ensures that each one of such sub-expressions 

can be implemented by (i) a demultiplexing program for searching the specified 

protocol and (ii ) a portion of code for checking the values of fields of the header. In 

such way, a compound filter (i.e., which refers to different protocols) can be generated 

through the algorithm reported in Figure 29 for each sub-expression referring to the same 

protocol, and by linking together all such portions of the program, as shown in Figure 31. 

The optimization of composed filters is left to future work. 

ip.src == 10.0.0.1 and ip.dst == 192.168.0.1
and

tcp.dport == 80

Portion of the filter searching 
for IP and evaluating the 

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Portion of the filter searching 
for IP and evaluating the 

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Subfilter 1

Subfilter 2

Filter FalseFilter False Filter TrueFilter True

T

T

F

F

Portion of the filter searching 
for TCP and evaluating the 

condition:
dport == 80

Portion of the filter searching 
for TCP and evaluating the 

condition:
dport == 80

 
Figure 31. Composed filter. 

During the IR generation phase, all the encapsulation and filtering conditions 

referring to fields are translated into checks on integer values loaded from the packet 

memory (if the size of the field is less than or equal to 4 bytes), or into string 

comparison operations (for fields greater than 4 bytes). References to bit-fields are 
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translated into masking operations on values loaded from the packet buffer. Finally, 

structured control flow constructs such as if-then-else, and loops are lowered to explicit 

branch operations. 

The generated intermediate representation of the resulting filtering program can then 

be optimized and finally translated to the target NetVM executable code. 

6.3.2. Field Extraction  

In order to handle field extraction rules, the code generation mechanism described so 

far is extended with the possibility to record the actual offset and size of the fields 

specified in a NetPFL extractfields()  statement. In particular, since it is possible 

to request the extraction of fields belonging to different protocols, the algorithm 

described in Figure 29, is extended with the capability to visit in reverse post-order a 

more complex subgraph of the encapsulation graph, with more than a target protocol, 

because the generated program should be able to follow all the demultiplexing paths 

leading to each of them. Besides, for each target protocol, the appropriate statements are 

generated for storing the offset and size of the fields referenced in the NetPFL rule.  

Such mechanism is exemplified in Figure 32, which shows the main phases involved 

in the generation of a program implementing the NetPFL rule 

“extractfields(ip.src, tcp.dport, udp.sport) ”. Figure 32A shows a 

minimal encapsulation graph containing only the Ethernet, ip, arp, tcp and udp 

protocols. Since the extractfields()  rule specifies to extract some fields from the 

ip, tcp and udp headers (namely ip.src, tcp.dport, and upd.sport), these protocols are 

considered as the targets of the demultiplexing paths to be taken into account for 

generating the code. Such demultiplexing paths identify a subgraph of the encapsulation 

graph, which is shown in figure Figure 32B, with target nodes annotated with the names 

of the fields to be extracted. 
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Figure 32. Code generation phases for the NetPFL rule “extractfields(ip.src, tcp.dport, udp.sport)” 

Figure 32C shows the resulting control flow graph. The code is generated in a similar 

fashion respect to the case of packet filtering, by visiting the subgraph in reverse post-

order (i.e. with a depth-first traversal where all the predecessors of a node are visited 

before the node itself), starting from target nodes: the <format>  section of each 

protocol is translated into instructions for locating the fields required (i.e. those needed 

by encapsulation rules or  requested for field extraction), while each 

<encapsulation>  section is translated into branch instructions pointing to the next 

protocols. Besides, for protocols annotated with fields to be extracted, specific 

instructions for storing the offset and size of each field are generated. In particular, in 

order to communicate the extracted information to the user, the Info memory provided 

by NetVM is exploited, and the list of fields specified in an extractfields()  rule 

is directly mapped on specific locations of the Info partition of the exchange buffer, as 

exemplified in Figure 33. 



6.3. The Compilation Process 

 

103 

 

 

extractfields(ip.src, tcp.dport, udp.sport)
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Figure 33. Allocation of fields on NetVM Info Memory locations 

6.3.3. Optimizations 

The translation of NetPDL descriptions into sequences of instructions for locating 

header fields produces a large amount of redundant code, which is reduced through a set 

of optimization steps. In particular, the definitions of variables that are never used are 

identified and safely removed by a dead store elimination phase, while a constant 

propagation phase recognizes the variables that hold a constant value and substitutes 

their use with the direct use of the constant. Since constant propagation can transform 

expressions evaluating variables in expressions evaluating only constant values, it is 

supported by a constant folding phase for substituting such sub-expressions with their 

result computed at compile-time. Besides, the lowering to explicit branch instructions of 

structured control flow constructs produces several sequences of jump to jump 

instructions that can be easily individuated and coalesced by inspecting the control flow 

graph.  

The quality of the generated code could be further improved by applying more 

specialized optimizations like those proposed by Begel et. al. in [57] for eliminating 

redundant checks on the same fields and for reducing the overall depth of the control 

flow graph of composed filters; however the implementation of such algorithms was 

outside the scope of the current work.  
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6.4. Conclusion 

This Chapter presents the architecture of a compiler and a set of techniques for the 

dynamic generation of packet filtering and field extraction programs from NetPFL rules 

and NetPDL protocol descriptions, which constitutes the base for a novel approach to 

the development of packet processing applications whose logic is decoupled from the 

knowledge about the format of network protocols. 

In order to minimize redundancies, the compiler deploys appropriate optimization 

techniques, leading to code that, in some cases, is completely equivalent to that of 

similar programs based on the hardcoded approach, as reported in Section 7.2. This 

demonstrates that the dynamic generation of efficient packet filtering and field 

extraction modules from NetPDL is feasible, with the advantage of adding support for 

new protocols or new encapsulation paths without changing the application code.  



  

105  

 

7. Experimental Results 

7.1. NetVM Snort Evaluation 

The capability of the NetVM snort front-end to generate NetIL code from a real 

Snort rule database has been assessed using an official ruleset provided by the Snort 

website in February 2007, which includes a total of 3058 rules, 1389 of them supported 

by the application. Such an apparent limitation is mainly due to the high number of 

rules requiring normalization and inspection of the URI field of HTTP headers (i.e. the 

“uricontent” option), which is a feature currently not supported. However, since the 

main goal was to demonstrate the ability of NetVM to allow the development of 

complex packet processing applications and not the complete compatibility with Snort 

features, such number can be considered a fair one, because it includes all the rules 

needing deep packet inspection functionalities (i.e. string and regular expression 

matching), and it is in line with the number of rules taken into consideration by other 

research works [51][52][53].  

Table 3 shows the number of NetIL instructions generated from the abovementioned 

ruleset for each module of the IDS. From the table it is evident that the Content 
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Matching module is the one with the highest number of instructions. The reason 

depends on the complexity of the rules involving content matching options. In 

particular, when a match is found for the first content option, all other patterns 

eventually specified by the rule must be extensively searched inside the payload. 

Moreover, the first match could trigger more than one rule, making the generated code 

extremely complex. 

Table 3. Number of NetIL instructions generated for each module 

Module Number of NetIL instructions 

Analyzer 137 
Content Matching 38872 

ethernet 10 
ip 4531 

icmp 5547 

udp 4806 
tcp 5127 

Connection Tracking 141 
Conn. Status Matching 6228 

Total 65399 

 

The time needed by the rule compiler for generating the code is comparable with the 

one of the native Snort fed with the same database, containing only the rules supported 

by both tools. In particular, the NetVM based IDS compiles 1389 rules in 1,72 s, against 

the 1,25 s measured for Snort.   

Since the runtime performances of the IDS depend on the capability of the NetVM 

framework to generate efficient code for the target architecture, detailed performance 

results will be reported in Section 7.3. 

7.2. NetPDL/NetPFL Compiler Evaluation 

This section assesses the ability of the NetPDL/NetPFL compiler to generate NetIL 

filtering programs from simple NetPFL rules and compares the results with equivalent 
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filters generated for the BPF virtual machine by the well-known libpcap/tcpdump tools. 

As an example, translating the NetPFL rule 

ip.dst == 10.0.0.1 returnpacket 

into executable code for the NetVM virtual machine results in the optimized filtering 

program shown in Figure 34.  

push 12 ;offset of the ethertype field
upload.16        ;load the ethertype field
push 2048        ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal
push 30          ;offset of the ipdst field
upload.32        ;load the ipdst field
push 167772161   ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if no t equal

ACCEPT:
pkt.send out1    ;filter true

DISCARD:
ret ;filter false

 
Figure 34. NetIL code generated for the filter ip.src==10.0.0.1  with a minimal NetPDL DB 

The corresponding BPF filter generated through the tcpdump tool is shown in Figure 

35. 

(0) ldh [12]                 ;load the ethertype fi eld
(1) jeq #0x800     jt 2 jf 5 ;if ==0x800 goto 2, el se goto 3
(2) ld  [30]                 ;load the ipdst field
(3) jeq #0xa000001 jt 4 jf 5 ;if ==10.0.0.1 goto 4, else goto 5
(4) ret #1514                ;return the frame leng th
(5) ret #0                   ;return false

 
Figure 35. BPF code for the filter ip.src == 10.0.0.1 

Besides the intrinsic differences between BPF and NetVM architectures (i.e. the 

NetVM is stack-based while the BPF virtual machine is register based), we can see that 

two programs are functionally equivalent. Both check the Ethernet type field against 

value 0x800 , then check if the IP destination field contains address 10.0.0.1 ; the 

packet is accepted only if both conditions are true. The primary difference between the 

two approaches is not immediately visible, because it relates to the simplicity in adding 
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support for new protocols (e.g. a new data-link layer protocol). In the case of the 

presented compiler it is sufficient to update the XML file containing NetPDL protocol 

descriptions, while in the other case some of the libpcap source files must be modified 

and the library must be recompiled. 

Since NetPDL supports a wide variety of protocols and cyclic encapsulations, the 

programs produced by the NetPDL/NetPFL compiler are way larger than the 

corresponding BPF filters. For instance a non-optimized IP filter generated using the 

standard NetPDL database counts 292 statements, versus 4 statements of the 

corresponding BPF program, as show in Table 4. However, while BPF only identifies IP 

packets directly encapsulated within a lower layer packet, the abovementioned NetPDL-

derived program identifies IP packets encapsulated in several possible ways (e.g., an 

IPv4 packet tunnelled within another IPv6 packet). It should be noted that the higher 

number of instructions generated by the compiler does not correspond to the number of 

instructions effectively executed in the “fast path” of the code (i.e. the typical number of 

instructions executed at runtime on common packet traces), however as will be shown 

in the next Section, the capability of recognizing complex encapsulations comes at a 

cost in terms of performances, because all the possible cases must be taken into account. 

Table 4. Number of Statements Generated by Different Compilers. 

 Filter1 Filter2 Filter3 Filter4 Filter5 

BPF 4 6 6 17 9 

NetIL(reduced db) 10 14 23 76 26 

NetIL (complete db) 292 491 487 1544 497 

 

Currently, the NetPFL compiler is not optimized for speed in code generation. For 

instance, the libpcap compiler needs about 120µs to compile the “tcp.dport == 

80” filter, against 87ms of the NetPFL. Although this value is still reasonable, this 
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result is mostly due to the very different number of statements generated by the two 

compilers before optimizations, which differs of about two orders of magnitude, as 

shown in Table 4 (first and third lines). It is worth recalling that the compilation time 

usually grows non-linearly with program size.  

7.3. Performance Evaluation of the NetVM 
Framework 

This section presents some tests that demonstrate the performance of the NetVM 

model and of its compiling infrastructure compared to other technologies. The tests are 

based on the two frontends available for the NetVM, that are the NetPDL/NetPFL 

compiler for packet filtering programs and the NetVMSnort Intrusion Detection Sensor. 

7.3.1. Testing the x86 back-end 

Tests on the x86 platform measure the performance of the code emitted by our 

compiler compared to two other targets. The first one is the code generated by the BPF 

virtual machine, which is able to generate native assembly through the WinPcap Just-In-

Time compiler. Although the WinPcap JIT compiler is very simple compared to our 

compiling infrastructure, it provides a useful benchmark with a well-known and widely-

used architecture. The second target is made up of a set of native programs created in C 

language and compiled with Microsoft Visual Studio, which represents the real 

touchstone of our solution. The native C filters use a custom macro to speed up byte-

ordering operations, instead of using the standard ntoh()  functions of the C standard 

library. 
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Five packet filters4 with different complexity have been defined and their execution 

time has been profiled through the RDTSC assembly instruction available on the x86 

architecture. Tests were performed on a Windows-based machine, equipped with a 

Pentium 4 processor, running at 3GHz with Hyper-Threading and 4GB of memory.  

Results presented in Table 5 show that our compiler generates code that is faster than 

that produced by the other technologies under testing. Main reasons rely on the intrinsic 

properties of the NetVM model, which exports some useful information to the 

compiling infrastructure, thus enabling very effective, albeit simple, optimizations (such 

as compile-time constant swapping). Since the characteristics of packet-processing 

applications are taken into consideration in the entire compilation process, the NetVM 

compiler can perform more aggressive optimizations than its counterparts. Notably, this 

is obtained with a limited set of optimizations compared to commercial compilers (such 

as Microsoft Visual Studio). Additionally, results show that both the mid-level 

optimizations and those implemented in the x86 back-end introduce a substantial boost 

in performance (third column) compared to non-optimized code (second column). 

Table 5. Filtering time on the x86 back-end (ticks) 

Filter NetVM no opt NetVM opt BPF Native 

1 23 7 36 8 

2 26 12 39 26 

3 30 15 39 13 

4 52 39 76 61 

5 35 21 43 34 

                                                   

 

 
4  Filters, according to the well-known libpcap/WinPcap syntax are “ip” (filter1), “ip src 

10.1.1.1” (filter2), “ip and tcp” (filter3), “ip src 10.1.1.1 and ip dst == 10.2.2.2 and tcp src port 20 

and tcp dst port 30” (filter4) and “ip src 10.4.4.4 or ip src 10.3.3.3 or ip src 10.2.2.2 or ip src 

10.1.1.1” (filter5). The test packet was created so that filtering code was executed entirely before 

returning to the caller. 
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The capabilities of the x86 backend have been assessed also with the NetVM Snort 

IDS, fed with the same rule database described in Section 7.1, which includes a total of 

1389 supported by the application. Table 6 shows the number of x86 instructions 

generated from the NetIL modules by the NetVM JIT compiler, and the actual size in 

memory of the target machine code. 

 

 

Table 6. Number of x86 instructions and actual code size 

Module Number of x86 instructions Code size (bytes) 

Protocol Analyzer 163 613 

Content Matching 268.667 1.130.250 

Ethernet 20 104 

IPv4 2.057 13.991 

ICMP 2.906 16.737 

UDP 1.838 13.173 

TCP 2.100 14.442 

Connection Tracking 261 1.271 

Conn. Status Matching 2.097 14.054 

Total 280.109 1.204.635 

 

The performances of the IDS sensor have been assessed by measuring the time 

needed to process a trace of 10M packets captured on a real network and by comparing 

the results with those obtained running Snort under the same conditions (i.e., using the 

same rule database). All the tests were performed on a Dual Xeon running at 3,4 GHz  

equipped with Linux 2.6.20-15 SMP. The NetVM application was compiled Just in 

Time into x86 assembly, while Snort was compiled through GCC version 4.1.2. The 
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console output of the two tools was disabled in order to reduce every additional 

perturbation on the execution time that still includes the time needed for reading packets 

from file. Besides, all the features not supported by the NetVM Snort IDS (e.g. flow 

reassembly) were disabled in the native Snort. The tests have been repeated 12 times, 

and results have been averaged excluding the best and the worst run. Results are shown 

in Table 7. 

 

Table 7. Throughput of the two applications 

Application Packets/Second 

NetVM IDS (with x86 JIT) 70.344 
Snort (native) 97.922 

 

Results look interesting. Performances of the IDS sensor translated into native x86 

code look promising, with the presented implementation running at 70% of the speed of 

the original Snort. Differences in speed are due to several factors: the IDS code that 

does not implements all the performance-oriented tricks of Snort because of the 

complexity of generating such this code in NetIL assembly. For instance, testing the 

destination port instead of the source port first makes a big difference in performance, 

and such these tricks are rather common in the original Snort. In other words, the 

performance penalties measured should be ascribed mainly to the algorithms used for 

analyzing packet data in the NetVM-based Snort, and refactoring the application would 

lead to performances comparable to those of the native Snort. 

7.3.2. Testing the Octeon back-end 

The first test on the Octeon back-end shows the results obtained with the same five 

filters already presented in the previous section. Due to the lack of a BPF JIT compiler 

for this platform, NetVM filters are compared only to handwritten ones, the latter using 

the GNU C compiler (GCC). Results (in clock ticks) are presented in Table 8. Also in this 
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case the code generated through the NetVM compiler is more efficient than that 

produced by the counterpart, thanks to the set of optimizations performed before 

emitting the code. In this case, the number of ticks is a good indication of the number of 

instructions emitted for each filter, because the Octeon processor is based on a MIPS 

pipelined architecture where most instructions are executed in exactly one clock cycle. 

These numbers can be further improved (although this is left to future work) by 

integrating a proper instruction reordering phase to avoid pipeline stalls. 

Table 8. Filtering time on the Octeon back-end (ticks) 

Filter NetVM Native 

1 9 8 

2 14 15 

3 17 20 

4 51 62 

5 29 32 

The NetVM Snort application has been profiled also on the Octeon platform. 

Although a direct comparison with the original Snort is not possible (processing 

algorithms are not exactly the same, and the original Snort does not run on the Octeon 

platform because of memory limitations), the main result is that NetVMSnort compiles 

and runs on the Octeon platform and is able to exploit native hardware coprocessors. 

This demonstrates the possibility of mapping even a complex NetVM application on 

this architecture, hence the validity of the NetVM model. Furthermore, Table 9 shows the 

comparison between the time spent in coprocessors (out of the total time used by the 

application to complete its job) between the x86 platform, where string-matching is 

executed in software, and the Octeon platform, where string-matching is executed 

through a hardware DFA engine, demonstrates that the NetVM model enables the 

efficient exploitation of native hardware features on platforms in which these are 

available.  
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Table 9. String matching performance on Octeon and x86 

Platform Percentage of the time spent in string matching 

Octeon 3.79% 

x86 13.44% 

7.3.3. Testing the X11 back-end 

The X11 architecture presents many properties that make it predictable, allowing to 

exactly determine the behaviour of a program through off-line static analysis, without 

runtime benchmarking. The reason is that throughput is constant, as long as the code fits 

into the instruction memory of the systolic pipeline. Therefore, if the code is proven correct, 

a useful evaluation metric is the amount of instructions generated by the compiler. With a 

fixed size pipeline and a given number of passes, translating a program to fewer instructions 

allows more features to fit in the program with the same deterministic throughput.  

For evaluating the X11 backend, two test programs were used: (i) a module of the 

NetVM Snort IDS, which performs L2-3-4 packet inspection and saves data for 

subsequent modules, and (ii)  a simple packet filter that demultiplexes and counts TCP 

packets directed to port 80. Although these applications are small, we claim that the 

operations they perform are rather common in packet processing programs and stress 

several NetVM capabilities, using coprocessors and several kinds of memory. 

Since there are currently no other optimizing compilers for the X11, it is hard to the get 

the baseline results needed to evaluate the performance of the NetVM compiler. To get 

relevant results the source programs were first translated with all optimizations turned off. 

A second compilation was performed on the same source files, with all the automatic 

optimizations enabled. Afterwards the code, as already optimized by the compiler, was 

further processed by hand to apply a wider range of transformations, using standard 

optimization guidelines used by Xelerated. The same procedure was repeated keeping the 



A.1.1. The pipeline 

 

115 

 

 

VLIW merging algorithm disabled in order to better appreciate its impact on the resulting 

code size. 

Results are shown in Figure 36: the ones related to the IDS module are on the left 

(Figure 36a), while the ones related to the filter application are on the right (Figure 36b). 

Both the total number of instructions are shown, as well as the number of resulting 

VLIWs after instruction merging. As it can be seen, the number of instructions for the 

Snort application is 86/76 for the automated and hand-written cases respectively, while 

the corresponding numbers for the filter application is 23/19. After instruction merging, 

the results were 68/48 for the Snort module and 22/17 for the filtering. 
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Figure 36. Code size for the test programs 

Current results are encouraging: even with a prototype compiler and small 

applications, the instruction count obtained with the compiler is within 20% of the size 

of hand-optimized code before VLIW merging. Moreover, this was obtained by a proof-

of-concept code that often used simple algorithms to speed up the implementation. We 

believe production-quality code can push this result even more. The differences between 

manual and automatic optimizations can be mainly ascribed to the simple VLIW 

merging algorithm employed, that does not perform instruction reordering, and to some 

missed copy folding opportunities. Both these issues can be addressed with standard 

techniques described in literature that do not require a redesign of the compiler 

framework to be implemented. 
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8. Conclusions 

This work analyzes the possibility to introduce some degree of flexibility in the 

design and development of high-speed packet processing applications, like those that 

must be executed in network nodes subjected to elevated traffic rates and where runtime 

performances play a key factor. 

The very general term “flexibility” has been considered in two specific contexts, i.e. 

(i) as the possibility to enhance the portability of packet processing programs for 

enabling the reuse of sofware solutions across heterogeneous processing architectures, 

while still ensuring the fulfillment of stringent performance requirements, and (ii ) as the 

possibility to seamlessly integrate support to novel protocols and functionalities in 

packet processing applications, thus enabling the development of efficient and protocol-

agnostic programs. 

The former point has been addressed by refining the concept of Network Virtual 

Machine, i.e. a programming model based on an abstraction layer for the development 

of platform independent packet processing programs, which completely hides the 

characteristics of the hardware to the programmer, thus enabling source code portability 
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across a set of heterogenous architectures. A major contribution of this work relies on 

the demonstration of the fact that the use of a common abstraction layer, if well 

designed, instead of introducing a lack of runtime performances, enables the 

deployment of special purpose mapping techniques that concurrent and general purpose 

programming models do not allow, thus leading to programs that are both portable and 

efficient at the same time. This is possible by capturing in the programming model the 

characteristics of the peculiar application domain, allowing the programmer and a 

backend compiler to better share the knowledge on the actual semantics of the program, 

with the result of enabling the application of more aggressive optimization techniques. 

On the other hand, the problem of decoupling the logic of packet processing 

applications from the knowledge of the format of network protocols in an efficient way 

has been addressed by leveraging the features of a language for the description of 

network protocols (NetPDL) and a language for the specification of packet filtering and 

field extraction programs (NetPFL). Using these components it is possible to create 

protocol-agnostic applications, however, in order to achieve good runtime 

performances, dynamic compilation techniques must be employed for the translation of 

the two languages into native code. 

During this thesis the proposed technologies have been implemented and validated. 

In particular, a framework composed of a portable runtime environment and a compiler 

infrastructure, capable of JIT and AOT compilation, have been implemented. The 

framework allows to seamlessly port NetVM applications on three extremely 

heterogeneous architectures (i.e. the Intel x86, the Cavium Octeon and the Xelerated 

X11), with performances that are comparable and sometimes better than those obtained 

with alternative state-of-the-art compilers. This demonstrates the assumption that 

portability and efficiency can be achieved altogether, when domain-specific 

characteristics are adequately captured in the programming model. 
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The capability of the NetVM model to support the development of complex 

applications has been demonstrated by implementing a complete network intrusion 

detection sensor, which performs packet processing at all networking layers, leading to 

results almost comparable to those obtained by an equivalent application (Snort) 

running natively. 

The possibility to efficiently decouple the logic of packet processing programs from 

the knowledge of the format of  network protocols has been demonstrated by 

implementing a compiler for the NetPDL and NetPFL languages, which is capable of 

generating packet filtering programs to be executed by the NetVM runtime 

environment. Results show that in some cases the generated code is completely 

equivalent to the one generated by alternative solutions like the libpcap compiler for the 

BPF, which is based on hardcoded protocol descriptions. Moreover, thanks to the 

effectiveness of the NetVM compiler infrastructure, the runtime performances of packet 

filters generated from NetPDL/NetPFL can outperform those of equivalent hand-written 

programs compiled with state-of-the-art compilers. 

Regarding the NetVM programming model, future work will be devoted to the 

investigation of the possibility to automatically partition packet processing applications 

on symmetric multi-core architectures, as well as to the analysis of problems related to 

the introduction of safety enforcing capabilities in the NetVM runtime environment. 

The work related to the dynamic generation of packet processing programs from 

external protocol descriptions will be directed towards the analysis of techniques for 

minimizing the number of redundant checks in packet filters obtained by the boolean 

composition of basic filters (i.e. those based on conditions on fields of a single 

protocol), by leveraging the information provided by the presence of an “encapsulation 

graph” (see Section 6.2.1). Besides, constructs for correctly handling the presence of 

tunneling loops in packet headers are being included in NetPFL. 
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A. Network Processor Architectures 

A.1. Xelerated X11 

The X11 processor is a systolic processor. In medicine the term ’systole’ is used to 

refer to the rhythmical contraction of the heart, which sends blood throughout the whole 

body by pulsing. A parallelism can be drawn to computing systems where many 

processing units are linked together with hardwired interconnections and synchronized 

so that new data can be periodically sent into - and results can be extracted from the 

system, and a steady flow of data is sustained. Such architectures can be very regular 

and might be more easy to implement with VLSI technology. 

 

A.1.1 The pipeline 

The X11 is made of units called PISC (Packet Instruction Set Computers) which are 

connected to each other in a very long pipeline. Data enters the pipeline at the first PISC 

unit and exits the pipeline at the last PISC unit. Every cycle data is moved from a PISC 
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to the following one and every PISC performs an instruction on the data that has 

currently available, until the end of the pipeline is reached. 

The PISC pipeline is augmented with Engine Access Points. These devices are 

interleaved between PISC blocks and serve as the access to external engines, which can 

be used to offload part of the computational complexity off the PISC pipeline. Figure 37 

shows a pipeline segment.  

 
Figure 37. Detail of the X11 pipeline, showing 3 PISCs and an EAP. Courtesy of Xelerated AB. Excerpt from 

[58].  

The entire pipeline is completely synchronous. There can be no stalls and no data can 

go lost in the PISCs and, under nominal operating conditions, in the EAPs. Packets 

enter the pipeline by the RX Arbiter, a device which feeds the first EAP (which, in turn, 

feeds the first PISC). Conversely, packets exit the pipeline by the TX Selector, which is 

fed by the last PISC in the pipeline. Since the whole machine is synchronous, the 

maximum rate of packets entering the pipeline is tightly related to the frequency of 

machine cycles, and (if no packets are dropped by the programmer) is equal to the rate 

of packets exiting the pipeline as well. There are a few consideration to make about the 

X11 processor that stem from the pipeline organization of the PISCs and the systolic 

architecture: 
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the amount of time required for processing every single packet is well-defined and 

known a-priori; 

there is a strict instruction budget limit that affects programs written for the X11. 

The first point derives from the fact that every packet follows exactly the same steps 

along the same physical units along the pipeline. No ’shortcuts’ can be taken to jump to 

a later stage: if the particular program execution for a given packets happens to use less 

instructions than the number of PISCs, we must wait for data to reach the end of the 

pipeline before the packet can be emitted. There can also be no waits of undetermined 

length in the pipeline, because every unit is able to complete its work within a single 

machine cycle. As a first approximation, no internal buffering is needed, or possible. 

The second point is a consequence of the finite length of the pipeline: once a packet has 

reached the end of it, processing is forced to terminate as there are no other execution 

units available. It is therefore impossible to execute a program that might require more 

instructions than the number of PISC processors in the pipeline. In order to let the 

programmer write longer, more complex programs than a single pass in the pipeline 

would allow, a loopback path is provided so that packets exiting the pipeline can reenter 

it for further processing. To preserve packet ordering, the number of pipeline passes is 

equal for every packet and is statically configured at compile time. If any quantity of the 

packets requires two or more pipeline passes for processing, every packet is bound to 

follow the same path and loop the same number of times. The maximum amount of 

iterations in the pipeline is fixed, and so it is the maximum possible execution time for 

any program. Using too many pipeline passes is undesirable. The number of loop 

interfaces is limited so they must be used sparingly and adding pipeline passes increases 

the processing latency. Finally, there is an upper limit on the number of pipeline passes 

given by the clock frequency of the X11 NP (which obviously cannot be scaled 

arbitrarily) and the packet rate requirement: if too many pipeline passes are required, the 
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packet insertion rate in the pipeline must be lowered. However the X11 NP is 

dimensioned so that multiple passes are possible while satisfying the wire speed 

requirements. 

 

A.1.2 PISC units 

PISC processors are the core of the X11 Network Processor. They are VLIW, 16- bit 

processors with a packet-oriented, RISC-like instruction set. They work on a general-

purpose register file which holds operands and results. Data can be of 8-bit or 16-bit 

size. 32-bit operands are not directly supported. A special purpose register file holds the 

device registers, which are used to configure the pipeline and to hold other specific 

information. PISCs are made of 4 different functional units: 

ALU, which handles arithmetical operation; 

Copy unit, which can be used to move data between the packet memory and the 

register file, or different locations in the register file; 

Jump unit, which is used to execute jumps (conditional and unconditional); 

Load offset unit, which purpose is to load the available offset registers. 

All the ALU operations must be performed over either 8 or 16 bits at a time. 32-bit 

operations can be implemented with multiple 16-bit instructions. On the contrary, the 

copy unit is able to move up to 32 bits at a time with a single instruction. The PISCs 

operate on very long instruction words (VLIWs) composed of four opcodes, one for 

every functional unit. At most one VLIW is executed in each PISC every machine 

cycle, as instructed by the RIP (Row Instruction Pointer) register in the device register 

file. There are no instructions that take multiple machine cycles to complete. In case a 

functional unit is not needed, its opcode in the VLIW instruction can be set to a no-

operation. Every PISC has a private amount of code memory that holds multiple 

instructions. If we consider the whole PISC pipeline, the PISC instruction memory form 
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a rectangular matrix. Every PISC has associated a single column of memory, and the 

active row is specified by the RIP register. Linear code sequences are usually laid out 

along rows, so that consecutive PISCs execute one instruction of the sequence each. 

After the instruction for the current cycle is finished executing the data the PISC is 

working on is forwarded to the following stage of the pipeline and new data is received 

by the previous one, according to the systolic nature of the X11 NP. The systolic 

structure of the architecture makes it so that data must be forwarded in every machine 

cycle. This makes it impossible for a packet to "go back" to a previous PISC or to a 

processor that is not the immediate successor of the current one. Under this light it is 

important to understand what jumps mean on the X11 NP: the value of the RIP is 

modified so that the next PISC will execute an instruction that lies on a memory row 

different from the current one, but in no way the data flow between the pipeline 

elements can be altered. The code must be laid out in memory accordingly. The 

execution of any instruction in a specific PISC processor is inhibited if the Focus bit, 

held in one of the device registers, is set. In that case the PISC processor acts like a 

pass-through device for all the data it receives, forwarding them to the next stage with 

the correct timing. There are programmatic ways to set and reset the Focus bit. In the 

pipeline sequences of PISCs are interleaved with EAPs. Each group of consecutive 

PISCs between two EAPs (or between an EAP and the end of the pipeline) is called a 

PISC block. 

A.2. Cavium Octeon CN38XX 

The Octeon CNX3800 is a Network Service Processor (NP) targeted at network and 

network security applications. Like most NPs it integrates many processing units to 

exploit packet processing application parallelism. It can have from two to sixteen 
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processing cores cnMIPS, which are a simple, high-performance, dual-issue 5 

implementation of the MIPS64®integer version 2 instruction set [59]. 

 
Figure 38. Architecture of the Cavium Octeon Network Processor 

Figure 38 shows a block representation of the chip architecture. The left part (the 

cores, the coherent memory bus CMB, the level-2 cache and the DRAM controller) 

implements an on-chip multiprocessor and a coherent memory system. The right part 

contains the I/O bus and interfaces together with configurable I/O and processing 

                                                   

 

 

5A dual-issue processor is able to process and execute two instruction for each clock 

cycle 
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hardware units. This part helps the cores in handling packets arrival, queuing, 

dispatching and forwarding, besides of hardware implementation of many packet 

processing function (checksum, cryptography, etc.).  

A.2.1 Overall workings 

Before going through a deep analysis of the most important components of the chip, 

let’s have a look to the path of a packet flowing into the system. In this way we will 

briefly introduce every component with his function and have a first understanding of 

the system internal workings and possibilities. There are many different algorithms for 

efficient searching. Packets arrive via any of the RGMII, SPI-4.2, PCI or PCI-x 

interfaces. The Packet Input Processing Units (PIP) has the task of storing packet data 

in on chip buffers or in DRAM together with information needed by software like the 

input port. This unit can also parse layer-two/IP packets for error condition and perform 

TCP/UDP checksum. 

Upon arrival, packets are transformed in working units to dispatch to cores. For 

every packet a new work is created and queued in the Packet Order Work unit (POW). 

The works’ queue is the primary on-chip communication and synchronization 

mechanism. cnMIPS cores can become aware of works waiting for elaboration either 

with interrupt or polling and can request a work at any time. Both cores and hardware 

units can submit works to POW which then schedules them for the cores. So software 

receives packets by obtaining the associated work structures. As we will see in A.2.4 

both hardware and software can tag works in several ways. Tags are used to implement 

synchronization and QoS mechanism. 

There is a hardware unit, the Free Pool Unit (FPA), which manages pools of pointers 

to available packet buffers. Hardware and software can allocate and free buffers 

independently. Queues used by cores to submit command to various on chip 

coprocessors are dynamically allocated memory chunks as well. 
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Cores receive work units and process them. When they finish their elaboration they 

either submit the work again to the POW and then to another core (in this way cores can 

be arranged in a pipeline fashion), or finally they can decide to send out the packet. 

Packet transmission is managed by another specialized unit, the Packet Output 

Processing unit (PKO).   

A.2.2 cnMIPS Cores 

There are up to 16 cnMIPS Cores in OCTEON CN38XX. They are a dual-issue 

MIPS64® Version 2 integer instruction set implementation with also privileged 

instructions. Two instructions can be fetched, decoded and issued per. All the cores 

support a 5+ stage6 pipeline (see figure Figure 39) with a clock rate up to 600 MHz. They 

also integrate a 32k 4-way instruction cache and a 8K 64-way data cache. They support 

conditional clocking for minimal power dissipation. There is a core with special and 

more privileged architecture (core 0) where the supervisor mode is implemented. 

Besides the standard MIPS64® architecture some Cavium specific extensions are 

implemented, like several bit manipulation instructions, unaligned memory accesses, 

specific cryptographic instructions. Cores can be configured as either little or big endian. 

They do not support floating point arithmetic.  

Each core has its own virtual memory space, which is completely private. We will see 

that there specialized mechanism which permit inter-core communication. 

                                                   

 

 

6We can identify five fuctional stage in the pipeline, but the last one uses more than one 

clock time 
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It is possible to run a complete operating system on cores, as well as industry standard 

C/C++ applications. Obviously core 0 with privileged instructions would be the supervisor 

core in an OS scenario. It is possible to partition cores at boot in a way that some can run a 

fully fledged operating system, while others can run a native networking application. 

Communication between the OS and the application could be achieved by means of specific 

OS drivers. 

 
Figure 39. Octeon cnMIPS core pipeline 

Cores use the Coherent Memory Bus to interface with memory and I/O. This bus also 

guarantees the coherence between the data caches of all cores. On the other hand, in order 

to communicate between them, the cores provide three main mechanism:  

• Using works and POW work queuing units (explained in Section A.2.4)  

• using shared memory regions (which requires software to handle locking)  

• using interrupts to signal other cores when shared variables change  

A.2.3 Packet Input Processing Unit 

The Packet Input Processing Unit (PIP) receives packets from all the RGMII, SPI4.2, or 

PCI interfaces treating all the ports the same way. It can manage up to 36 input ports at the 
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same time. When a packet arrives, the PIP allocates and writes packet data into buffers in a 

format convenient to higher-layer software. The unit supports a programmable buffer size 

and can distribute packet data across different buffers to support large packet input sizes. 

This unit also creates a work for the packet. The work contains a pointer to the buffered 

packet, packet error checks, and hardware parsing results (see A.2.4 for a deeper 

explanation of work structures). In fact the PIP unit can perform three kinds of automatic 

header parsing:  

• uninterpreted parsing is skipped  

• skip-to-L2 parses various Ethernet-like L2 header and can determine whether 

IP is present in the packet  

• skip-to-IP directly parse the contained IP packet  

Normally the PIP unit writes packets in the L2/DRAM storing a pointer to the buffer in 

the work structure, but if the packet is smaller than 128bytes it is completely written into the 

work, hopefully in an on-chip buffer. The PIP units can be configured to write other useful 

values in the work structure:  

• a QoS value, which gives packets different priorities and queues  

• a Group value which decides to which cores the respective work will be 

scheduled. In fact cores can subscribe to different groups. The group value can be 

calculated from the input port or from the protocol, using hardware parsing data. This 

value can also be calculated from IP and TCP header field in order to give the same 

value to packets belonging to the same TCP-flow  

• a Tag value, which can change the scheduling order of packets.  

After writing all work fields PIP unit passes the work to the POW unit. 

A.2.4 Packet Order Work Unit 
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The Packet Order Work Unit (POW) is a coprocessor providing important 

synchronization functions. A work is described by an associated work queue entry and may 

be created by hardware or core software. The OCTEON centralized packet input unit 

creates a work upon every packet arrival. The POW unit queues the work entries 

implementing eight input work queues. The POW can be configured to treat each queue in a 

different way, thus implementing different service levels. 

Cores request work from POW. This unit selects the work for the core and return a 

pointer to the work-queue entry. All work is not equal, in fact the POW supports 16 

different groups. Each piece of work is associated with a group. Each core has a 

configuration variable which select which groups can be submitted by the POW to that core. 

In this way it’s possible assign different functions to different cores: for example packet 

processing may be pipelined from one group of cores to another group of cores performing 

to different stage of the processing. This is a very flexible and configurable system which 

enables programmers to better exploit the processor parallelism. 

An other important field useful to order and synchronize related works is the tag field. 

There are three different tag types:  

• ORDERED that guarantees ordering of works with this tag type  

• ATOMIC that guarantees ordering and atomicity, so that two pieces of work 

with this tag type cannot be scheduled at the same time  

• NULL that does not guarantee ordering  

Core software can change the tag value via a tag switch transaction. 

Typically a piece of work is scheduled to a core when core software executes a 

GET_WORK transaction to request a new work. The elaborations of works is sequential: no 

work can be scheduled to a core which is executing unscheduled work or is already 

elaborating some work.  

A.2.5 Free Pool Unit 
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The Free Pool Unit (FPA) maintains eight pools of pointers to free L2/DRAM memory. 

The FPA hardware implements a data structure that approximates a logical LIFO for each 

free pointer pool. Both core software and hardware units use these pool. When a pool is too 

large to fit in-unit store the FPA creates a tree structure in DRAM using freed memory in 

the pool to store extra-pointer. Pool 0 is a special pool, since PIP stores packet data. 

Moreover PIP allocates work queue entries from a programmable pool. When one of these 

two pools becomes empty PIP cannot receives packets.  

A.2.6 Packet Output Processing Unit 

The Packet Output Processing Unit (PKO) gathers packets from L2/DRAM and sends 

them out on the RGMII, SPI4.2, or PCI interfaces. It can have up to 36 ports for sending 

packets to all destinations. The PKO unit supports up to 128 queues to buffer the packets to 

be sent out to the 36 available hardware ports. Each port can have a variable number of 

queues (up to 8) attached to it.  

The system actually queues commands in these buffers instead of only packet data. In 

fact each packet transfer is a command. PKO performs a priority arbitration among the 

queues to decide which command is to be executed first.  

PKO unit has also a specialized hardware to calculate the L4 checksum. In this case 

PKO can buffer the entire packet in its internal store. The PKO hardware only reads packet 

data from L2/DRAM once to send out a packet, unless it has to calculate the checksum for a 

TCP/UDP packet that is too large to fit in the internal buffering for a port (which can 

contain up to 1,5 KB). The unit can also recreate a complete packet from multiple segments 

stored in L2/DRAM, freeing the buffers of FPA containing the segments. All of these 

optional operations are specified in the command data submitted to the unit by the cores. 

The PKO unit uses a priority algorithm that allows a configurable number of queues to 

be statically designated as high priority. When present, these priority queues must be the 
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lowest-index queues attached to the port. The lower the queue index, the higher the priority 

of the queue. 

A.2.7 Deterministic Finite Automata Unit 

The Deterministic Finite Automata Unit (DFA) is a coprocessor used to traverse 

graphs in memory. It can be exploited to implement fast hardware pattern matching 

algorithms.  

A DFA is a state machine that receives as input a byte value (the DFA alphabet is 

made of the 256 possible values of 8-bit) which causes the transition from one state to 

the next. The states and the transition function can be represented by a graph, where 

each graph node is a state and different graph arcs represent state transitions for 

different input bytes. In the Octeon implementation each node in the graph is a simple 

array of 256 Next Node Pointers , one for each unique input byte value. Each 

Next Node Pointer  contains a Next Node ID , which directly specifies the next 

node/state for the input byte, and a tag that can hold three values:  

• normal nothing special for this node, continue traversing the graph  

• marked the transition should be marked for later analysis by software. This is 

reported in the result.  

terminal the next node is a terminal node and the graph traversal should stop  

As shown in Figure 40, the DFA unit has three main components: the low-latency 

DRAM controller, 16 DFA thread engines (DTEs) and the instruction-input logic, which 

includes the instruction queue.  
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Figure 40. Architecture of the DFA Unit 

The Octeon SDK contains specific tools which create the graph image to load in the 

low-latency memory (LLM) from the regular expressions. The user can load as many 

graphs as he likes, having the memory size as a limit. The LLM is is an external memory 

with an interface with a data rate equal to the core clock rate. The LLM DRAM controller 

can submit many operations to the memory at the same time and can also handle bank 

replication automatically in order to encrease data rates. 

DTEs are independent coprocessors that can traverse graphs. When a core needs the 

DFA services, it must submit a command to the DFA instructions queue. The command 

contains the pointer to the graph we want to use, and a pointer to the data we are going 

to scan. When one of the DTEs is free, it fetches a pending command from the queue 

and starts walking the graph loading the packet data indenpendently from the DRAM. It 

also writes the scanning results back in DRAM as well.
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