POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Informatica e dei Sistem¥X ciclo

Tesi di Dottorato

Enabling Flexibility in High-Speed
Packet Processing

Olivier Morandi

Tutore Coordinatore del corso di dottorato
prof. Mario Baldi prof. Pietro Laface

Marzo 2009

Author Publications

Parts of the research presented in this thesis baea previously published or

presented in the following papers:

« Morandi, Olivier; Risso, Fulvio; Baldi, Mario; Balu, Andrea, Enabling Flexible
Packet Filtering Through Dynamic Code Generatidm Proceedings of IEEE the
International Conference on Communications, 200& '08. , pp.5849-5856, 19-
23 May 2008

* Morandi, Olivier; Risso, Fulvio; Rolando, Pierluigiagsand, Olof; Ekdahl, Peter,
"Mapping packet processing applications on a systiray network processarin
Proceedings of the International Conference on HRghformance Switching and
Routing, 2008. HSPR 2008. , pp.213-220, 15-17 M2382

e Morandi, Olivier; Risso, Fulvio; Valenti, Silvio; &flia, Paolo; Design and
implementation of a framework for creating portabénd efficient packet-
processing applicatiorisIin Proceedings of the 7th ACM international Cengince
on Embedded Software (Atlanta, GA, USA, October 29, 2008). EMSOFT '08.

* Morandi, Olivier; Risso, Fulvio; Moscardi, GiorgibdAn Intrusion Detection Sensor
for the NetVM Virtual Processor In Proceedings of the The International
Conference on Information Networking 2009 (ICOIND2) Chiang Mai, Thailand,
January 2009.

Table of Contents

I 01 4 oo [T £ o o F RO URRTRRR 1
PART I. Enabling Flexible Packet Processing.........cccecvevveenieennenne 5
2. TowardsPortable and Efficient Packet Processing Applications............... 7
P20 S [011 o To [8 T 1o o F SRS 7
2.2, Related WOIKouiiiiiiiiiiiiiiee et 10
2.3. Using a Virtual Machine for Code Portability..............coovvvieiiiiiinnnnnn. 13
2.4. JIT Compilation of Networking Data-Plane Aggliions 16
2.5. The Network Virtual Machine ... 19
2.5.1. NetlL Execution Model ... 12
2.5.2. MEMOIY LAYOULccoiiiiiiieeieeiii st e et e e e eeeee e e e e e eeeanns 22
2.5.3. Threading Modelccooiieiiii i 24
2.5.4. NetlL INSrUCLION Setcooiiiiii e 24
2.5.5. Coprocessor ADSIIAaCION.........uuuieeeeeeeiiiiiiieeee e e e e e e e e e eeeeeeeeeeeenaanns 26.
2.6. Why NetVM Enables both Portability and Effiegycovvveeennnnn. 28
2.6.1. Dataflow programming Model...........cccceeeeiieiiiieeiieiiieeeeeen 28
2.6.2. Domain-Specific Intermediate Languagec.......uvveiiiiiieeeeeeenneenne. 30
2.6.3. Structured Memory Model............oooeeeeeeiiiiii e 32
2.6.4. Virtual COPIrOCESSOIS....uuuiiii e ettt e e e e e e e e e e eeeeeeeaeees 34
2.7, CONCIUSION .ottt et e e e e e e e e e eenans 36
3. Decoupling Programs from the Knowledge of Protocol Formats............. 38
3.1. Enabling Protocol-Agnostic Packet Processipglisations.................. 38
3.2. Related Technologies: NetPDL and NetPFL.cceveviviivriiiciinnnn.... 44
3.2, NEEPDL .ttt e e e e 44
3.2.2. Defining actions: NetPFLoicceeeeviviiiiiiieeeeeeeeeeeeeeeeeevivien L 4

3.3, CONCIUSION <.t e e e 48

Y S I N V- T F= 14 o] o O 49
4. Implementingthe NetVM Modeccccoviieiicieceee e 51
g I [011 €0 To [Tod 1 0] o TSR PPPSRRPP 51
4.2. The NetVM FrameWorKooouiiiimmmm it e e e 52
4.3. Compiler INfraStrUCIUIEmmmeeeeeieeiiiaee e e e e e e e e e eeeeeeeeeees 53
4.4. The Compilation FIOWccovvviiiiiiicmmmmeeee e 54.
4.4.1. Mid-Level OptimiZatiONsSeieeemeiueiiiianeee e e e e e e e eeeeeeeeeeeeeennnes 7.5
4.5, Compiler BaCKendSccoiiiiiiie i i it e e e e e e e e e aeeeeeenenens 60
4.5.1. X86 BACKENUcooiiiiiiiiiiiieeeeeeeeett e 61
4.5.2. OCteon BacK-eNnduuuuiiiiiicmmm e 63
4.5.3. X11 BACKENA .. .ot 67
4.6, CONCIUSION. ...uuttiiiiiiiiiiiiii e mmmmm et e e e e e e e e e 78
5. Assessing the programmability of the NetVM ..., 79
ST R [01 o o 18 ox {0 o I PP PP PP PP 79
5.2, Related WOrK........cooiiiiiiiiiiiiseeeeee e 80
5.3. The Snort Intrusion Detection SENSOTccccccvvvviiiiiiieeeeeeeeeieeeeee 81
5.4. Architecture of the NetVM IDS Sensor.....cccccooviiiieiieiiiiiiiieeeeiiiiiiiins 83
5.4.1. Packet-processing WOrKflOWccccceeeeeiieeciiiiiicceceeee e 86
5.4.2. The code generation PrOCESSicccccieeeerriiiiiiiaaa e e e e e e eeeeeeeeeeeenes 88
5.5, CONCIUSION....ciiiiiiiiiiiee it 89
6. Flexible Generation of Packet Filtering and Field Extraction Programs.91
L R [01 o o 18 ox 1o o I PP PP P T PP P 91
6.2. Generating Packet Filtering Programs from BétBnd NetPFL.......... 93
6.2.1. The Protocol Encapsulation Graphecccceeeeooeeeeeiiiiiiieiii, 93
6.2.2. Packet DemultipleXing ... 95
6.2.3. Locating header fileldScoooiiiiccceeecce e 98
6.3. The Compilation PrOCESSuuuvuiueeeeeriiiiiiiiiiaaae e e e e e e e eeeeeeeeeennnens 9.9
6.3.1. COUE GENEIALION.....uueiiiiiiiiiee e eeeeeee ettt 100
6.3.2. Field EXIraCtioncooooeiiiiiiieeeeeeeeeees e 101
SRS TRC T @ o] 111 417= 11 [0] o 1 103
6.4, CONCIUSION.. ..ottt et e e e e e e 104
7. EXperimental RESUITS......cccc oottt 105
7.1. NetVM Snort EValuation..........oooo oo 105
7.2. NetPDL/NetPFL Compiler Evaluationcoeee.evvvviiiiiiiiiiieieeeeeee, 106
7.3. Performance Evaluation of the NetVM Framework........................ 109
7.3.1. Testing the x86 back-endcouueiiiiiiiiii, a0
7.3.2. Testing the Octeon back-end......... i, 112
7.3.3. Testing the X11 back-endceeeeeeriiiiiiiiiiiieiee e e 114

8. CONCIUSIONSt sssmnssssmsmsmnnsmsmnnnnsnnnnnnnnns 116

1. Introduction

During last years we have assisted to an expongmbath of the Internet, both in
the number of connected users and in the varietgeofices made available by an
always increasing number of subjects. Indeed,ntexriet is day-by-day more pervasive
in our lives and we are gradually transferring lcs tvirtual world” many tasks and
activities that until a few years ago were mos#guydiar to other domains.

On one side, we have seen the explosion of thedWuitle Web and its shift from a
one-to-many to a many-to-many paradigm, leadinth¢orise of successful phenomena
like weblogs and social networks. This is couplethwnother parading shift, in which
the web is seen as a distributed platform providimgt are called “web-services”. On
the other side, we have seen the rise of severalpossibilities for communicating,
sharing and exchanging informations, and it is raaya common to use Voice over IP
(VolIP) services, P2P file-sharing, Internet radaowl TVs, online applications (e.g.
Google Docs). The network is increasingly used asaasport layer that allows
distributing and exchanging complex and semantigah information.

In such scenario, Network Operators face severallatges, because they need to

provide users with appropriate Qality of Serviceo§) and deploy adequate security

1. Introduction

policies, while traffic loads on edge and corewwmeks are increasing, and network
procols are evolving in order to support newbomvises. This pushes for the need of
some degree of flexibility also in high-speed rating devices, like switches, routers
and firewalls. So the Networking Industry must copéh extremely diverging
requirements: on one hand, networking equipmentst ine able to keep up with line
rates that are rising in the order of tens of gigper second, while, on the other hand,
there is the need to shorten up the developmene,cyt order to support novel
protocols and advanced functionalities within séodelays. In particular, this second
point is being pushed to the limit of giving cusens the ability to independently
implement new functionalities, for example addingport to custom and proprietary
protocols. As a direct consequence, the desigretWark devices can no longer rely on
completely hardware-based solutions - usually egipip Application Specific
Integrated Circuits (ASICs) - for achieving higlrabghput perfomances, because of
the need of providing some degree of flexibilitylggrogrammability.

The need of accomodating both flexibility and pearfance requirements is common
in many fields related to the design of embeddestesys [1], and a widely adopted
solution is to integrate several, possibly hetenegels, processor cores on a single chip,
along with specialized hardware coprocessors,raterao build what is called a System
on a Chip (SoC). In particular, during the last tgars, chip vendors have been
proposing several commercial Application Specifitstiuction Processors (ASIPS)
targeted to high-throughput packet processing, waire commonly known as Network
Processors, or Network Processing Units (NPUS).

NPUs are specially designed and optimized for eBpkocessing operations and, in
order to achieve high througput performances, theswyally provide from tens to
hudreds of concurrent processing elements, whiciblenthe exploitation of the

intrinsic parallelism found in packet processinglagations.

2.1. Introduction

However, the expected advantages of using NetwodceBsors for designing
today’s network devices, come at some costs in deomease of development of
software applications. In particular, difficultiase mainly tied to the high heterogeneity
of available architectures, making nearly impossiltthe development of portable
applications. In fact, a program written and optied for a specific NPU cannot be
retargeted to work on a different hardware platfobecause, unlike for general purpose
processors that expose a coherent programming moe®Vork processors generally
expose a variety of heterogeneous low-level prograng models, spanning variably
from shared-memory multi-processing models to i@l and message passing ones.
Moreover, there is the lack of a standard high llgregramming language for these
processors, as often vendors provide a softwarelolewment kit, which uses a C-like
language with extensions that are peculiar to gezific hardware platform. It is also
common to write applications directly in the natimesembly language of a given
network processor.

The depicted scenario highlights the need for needltions capable of increasing
the reuse of software components and to shorteddielopment cycle in the design of
complex packet processing applications, while s#tisuring the fulfillment of
perfomance constraints. The aim of this work isegpond to such defy, by taking into
account two main aspects of the problem:itife need of enhancing the portability of
software solutions, achieving a looser couplingMeein packet processing programs
and the specific hardware platforms where they ballexecuted, andi) the need of
being able to adequately follow the evolution oftwwk protocols, by allowing
applications to seamlessly incorporate the supportemerging ones without the
additional costs related to stepping into a newebtigment cycle (i.e. program

refactoring, quality assurance, release).

1. Introduction

The former point is addressed by investigating opg@ortunity of capturing the
intrinsic characteristics of packet processing gptibns into a novel programming
model, which is able to adequately abstract thectfanalities usually provided by
network processor architectures, while allowingtfplan-specific mapping choices to
be isolated in a set of back-end modules. Therlatient is addressed by investigating
the possibility of decoupling the logic of applicats from the knowledge of network
protocols, providing the user with a set of langsa@nd tools that allow writing
protocol-agnostic packet processing software wétfggmances that are comparable to
those of hand-written programs.

This work is structured in two main parts. In tivstfone, two ortogonal solutions for
enabling flexibility in packet processing softwane analyzed: in Chapter 2 the NetVM
programming model is presented as a possible salditir creating both portable and
efficient packet processing applications, while gtba 3 will introduce the languages
and the outline of an architecture for obtaininficegnt protocol-agnostic applications.
The second part aims at validating the proposedtieak. In particular, Chapter 4 will
present the implementation of the NetVM model asrdime environment with a multi-
target compiler infrastructure; in Chapter 5 th@atality of NetVM to support the
development of complex packet processing applinatis assessed; Chapter 6 presents
the architecture of a compiler for the dynamic gaten of packet filtering programs
based on an external protocol description datalegerimental results are reported in

Chapter 7, while in Chapter 8 conclusions are dramehfuture work is outlined.

PART I. Enabling Flexible Packet
Processing

2. Towards Portable and Efficient
Packet Processing Applications

2.1. Introduction

During the last decade, the increasing requirementerms of flexibility for the
design of high-speed networking devices have pusined Industry towards the
development of network processors, i.e. programen@bbcessors providing several
concurrent execution units, with Instruction Setcltectures (ISAs) specifically
targeted to packet processing, usually integrateth wpecial purpose hardware
coprocessors for offloading computational intendwectionalities. Even though such
devices are not able to achieve the same througigstdrmances of ASIC based chips,
they provide more flexibility thanks to their pragnmability.

However, network processors have traditionally eggoseveral problems from the
point of view of the ease of programming. Such feois mainly relate to the need for
the programmer to deal with very low-level aspectsthe hardware, and to the

difficulty of manually partitioning application mates across several concurrent

2. Towards Portable and Efficient Packet Procesgipglications

processing engines. The tools and Software DevedoprKits (SDKs) provided by

manufacturers are in most cases a partial solusorge they tend to expose the
hardware to the programmer through an assemblgu#aye, and even when a high
level language such as C is provided, it is gehemtended with constructs that
directly maps onto hardware features, leadingléxla of abstraction.

Beside problems related to programmability, netwandcessors suffer from a major
problem given by the impossibility to reuse softevaolutions across different hardware
platforms. Applications that have been developed aptimized for a specific NPU
architecture, when needing to be ported to a diffearchitecture, must be redesigned
from scratch and have to follow again the entireettgoment cycle. Indeed, network
processor architectures proposed from differentdoen are extremely heterogeneous
between them. They span from symmetric multi-prsicgsplatforms like the Intel IXA
family (IXP12XX, IXP24XX, IXP28XX) [2] and the merrecent Cavium Octeon [3]
network processors, to systolic array dataflow pssors like the Xelerated X11 [4] and
the Bay Microsystems Chesapeake [5], which are ldapaf processing packets at
speeds in the order of tens of gigabits per secAnslrvey on the characteristics of
some of these NPU architectures can be found ireAgix O.

Given such high heterogeneity, the problem of defira common programming
model, capable of providingenerality (i.e., capability to support a wide range of
applications),portability (across a wide range of network processor ardhites),
efficiency while still providing anadequate programming abstractiois particularly
difficult. As will be detailed in Section 2.2, cent solutions usually provide the latter
two features, but no solutions exist that looksthe problem in a comprehensive
manner. In particular, the generality of the apphoand portability are usually not taken
into account, since the proposed solutions are Isnaangeted to specific hardware

architectures, or are able to accommodate a vemifgpclass of applications.

2.1. Introduction

Portability and efficiency are usually consideradcanflicting requirements that can
be hardly achieved altogether in a specific sofutladeed, while the introduction of an
abstraction layer capable of hiding the differenoetsveen different hardware platforms can
represent the basis for enabling the creation ofapte software,the achievement of
adequate performances from the same applicatiorcuee@ on a wide variety of
heterogeneous architectures is extremely challgngin

The main argument of this thesis is that, in theecaf network processing software,
portability and runtime efficiency can be achiewedh at the same time. In fact, packet-
processing applications are usually very limiteg@ope and expose very recognizable
structural and behavioural patterns. Such chaiatitey that are peculiar to the specific
application domain can be exposed to the programtheough an adequate
programming model, and inside the intermediate esgmtation of a multi-target
optimizing compiler, allowing an efficient mappiog heterogeneous architectures and
enabling the deployment of aggressive special p&pptimizations.

In order to support this argument, part of thissittework has been devoted to
refining and validating the concept of a Networktial Machine (NetVM) [6][7],
previously proposed by the NetGroup from Politeonit Torino. NetVM provides a
mid-level abstraction layer, based on a datafloegmmming model in which hardware
is virtualized, with the result of completely hidinthe target architecture to the
programmer. In other words, NetVM aims at applying well-known paradigm “Write
once, run everywhere” proposed by the Sun Javaiditachine (JVM) [8] and the
Microsoft Common Language Runtime (CLR) [9] to tirdd of network processing
software, where performance is a key factor.

One of the main objections to this approach is that introduction a common
abstraction layer, while enabling portability, woulesult in a substantial overhead,

wasting the benefits of using special purpose gtoinized hardware architectures. The

2. Towards Portable and Efficient Packet Procesgipglications

first part of this thesis will demonstrate thatstllaim is not necessarily true in the case
of a virtual machine specifically designed for petegrocessing applications, like the
NetVM. In particular, the NetVM model exposes a setkey features that, besides
making it a good target for different high-leveh¢mages, enable both portability and an
efficient mapping on the target hardware.

After a brief overview of the available related Wwothe current chapter will present
the NetVM abstraction layer, analyzing the poirttattmake it a good choice for
developing portable and efficient network data-plapplications, while the following
chapters will focus on the implementation of the deloas a portable runtime
environment and multi-target optimizing compilen. ¢hapter 0, experimental results
will show that NetVM applications can be efficigndxecuted, without any change, on
three different platforms such as the Intel x86egahpurpose architecture, the Cavium
Octeon [3] multi-core network processor and theeXated X11 [4] systolic array

processaor.

2.2. Related Work

In the last years, the problem of creating a stetélamework for programming network
processors has been widely investigated from bathstry and academia.

Click [10] is a framework for implementing a modulsoftware router, by
interconnecting different packet processing modakdied elements. Elements implement
specific functions like packet classification, quey) scheduling, and interfacing with
network devices. A router configuration is builthoecting elements in a directed graph,
which represents the flow of the packets insiderthdger. A Click element is written in
C++, and is a subclass of the virtual class Elent¢RtClick [11] proposes a programming

model based on the Click language for Intel IXRuaek processors, showing that the level

10

2.2. Related Work

of abstraction introduced, while easing applicatit@velopment, also enables an efficient
mapping on a special purpose architecture.

Memik et al. [12] demonstrate the advantages afcsiring applications for network
processors in a modular way, and describe a sysiiad NEPAL, which is able to extract
the modules that constitute a sequential netwookgssing program for mapping them on
parallel execution units.

PPL (Packet Processing Language) [13], definedbyabrics Inc., is a declarative
language for programming network processors ofibe XA family. A virtual machine
executes PPL programs on the target platform, anih icharge of mapping high level
constructs onto the available hardware featureablamg the transparent exploitation of
parallel processing engines. While the detail$f $olution are unknown, the fact of being
highly tied to a specific high-level language (IRPL), and to a specific platform (Intel
network processors), represents a limitation.

Wagner et al. if14] proposed a C compiler for an industrial networkgassor,
showing that exposing low-level details in the laage through compiler known
functions allows an efficient exploitation of theasdable hardware features without
relying on assembly language.

PacLang, by Ennals et al. [15] is a framework #@dédws application designers to
use a simple high-level language to partition pagkecessing programs in different
concurrent tasks. The base elements of PacLantaske and queues. Tasks represent
computations that can be executed concurrentlylendnieues can be assimilated to
pipes, through which tasks can communicate andhsgnize. The proposed system
allows a PacLang program to be automatically panttd on parallel execution units;
however, its capabilities have been demonstratgdammintel IXP network processors.

Shangri-la [16] is a system with a more generar@ggh. Its basic components are a

domain-specific programming language (Baker) andprafile-guided compiler

11

2. Towards Portable and Efficient Packet Procesgipglications

infrastructure, which is able to optimize and map agoplication onto Intel network
processors. While the reported performance resudis promising, it is unclear if the
compiler framework can be retargeted in order tppsut different architectures.
Moreover, the solution appears to be tied to thkeB&anguage.

These approaches generally fail to provide a cohgmsive framework for achieving at
the same time both efficiency and portability asrdgeterogeneous architectures. In
particular, those that are targeted to a speclatfgrm, focusing on performance, tend to
expose in high-level programming languages a s&vefevel primitives very close to the
hardware, causing a lack of abstraction. For examptogramming models targeted to
multi-core based network processors may includeli@xpgorimitives for task/thread
synchronization, while other may provide speciaictions for accessing coprocessors or
that are directly mapped onto special-purpose unstns. These can be present either in
the form of library functions and APIs, or intrinsi(i.e. compiler known functions). In such
scenario, the model is hardly portable becauseto much tied to the target architecture
and porting it to another platform may be too muwdstly if not impossible, like for
example when needing to map thread synchronizationa systolic array processor.
Additionally, this approach, which originates fraanbottom-up vision, tends to prevent
programmers from having an abstract vision of tapplication, because they are forced to
structure the software according to the executiodehsupported by the hardware, e.g. by
defining the appropriate task/thread partition afehling with synchronization issues
explicitly, hence preventing any possible outcom&erms of portability.

Vice versa, the approaches that are more applicatiented usually tend to completely
hide the details of the underlying hardware, pdgsiénabling software portability.
However, they usually lack in generality since tla@g mostly tied to a specific class of
applications, leading to the impossibility to etigely use the model for writing different

kinds of applications, with the result of actudityiting the flexibility of the approach.

12

2.3. Using a Virtual Machine for Code Portability

In contrast to previous solutions, the one propdgethis thesis is based on a virtual
machine specially targeted to packet processindicapipns and aims at providing a
comprehensive programming model that is able tivelehigh performances on target
architectures supporting it, while ensuring completde portability and generality (i.e. the
capability to support several kinds of applicatlotigough a mid-level abstraction layer.
This result is achieved by completely hiding théade of the hardware to the programmer
and by capturing in the programming model the dttarsstics that are peculiar to the
network-processing domain, allowing the compilerheove a more detailed view on the

semantic of the application, thus enabling an iefficmapping.

2.3. Using a Virtual Machine for Code Portability

The concept of a virtual or abstract machine isrmomy used when facing the need
of hiding from the programmer the characteristifshe real execution units where
programs will be actually executed. This decouplatigws the same programs to be
executed on any system where an implementatioheofibstract machine is available.
In particular, the implementation of a virtual mehusually comprises a component
called the Runtime Environment, which provides gpiag of the abstract components
onto the target architecture, and a componentréorstating into executable code the
instructions of the source program. The latter banan interpreter, an ahead of time
(AOT) compiler, or a just-in-time (JIT) compileFigure 1 shows these three possible
scenarios.

In the case depicted iRigure JA, the source program is executed through an
interpreter, i.e. a program that is able to de@dequence of instructions and execute
them by emulating their behaviour. Because of iisp8city, usually the

implementation of scripting languages and the ezfee implementation of most virtual

13

2. Towards Portable and Efficient Packet Procesgipglications

machines falls in this scenario. However, such #pproach is not able to provide
adequate runtime performances, since the procedsanfding source instructions and

emulating them is very time-consuming.

[Program) (Program] [Program]

‘ Abstract Machine ‘ ‘ Abstract Machine ‘ ‘ Abstract Machine ‘
Runtime environment Runtime environment
AOT Compiler -
‘ Management ‘ ; Management \—J—IJIT ol
‘ Interpreter ‘ Target Program Target Program
Emulation Layer \ En?/iL:'ro]trmeent Emulation Layer
‘ Target Platform (CPU + OS) ‘ ‘ Target Platform (CPU + OS) ‘ ‘ Target Platform (CPU + OS) ‘
A B C

Figure 1. Three different implementation schemeshstract machines

Figure 1B shows the scheme used when runtime pesfozes play a major role. In
such case, the source program is translated aHetatieointo a program that can be
directly executed on the target machine, possikpiagting functionalities provided by
a runtime environment. The compilation process bapmnce, while the execution of
the target program is delayed and can be repeatestad times, e.g. with different
inputs. This implies that the complexity of the eodeneration and optimization
techniques featured by the compiler can be tuneded on the required runtime
performances. This scenario is common when implémgnraditional high-level
programming languages like C/C++, etc. Even thatughquite uncommon to associate
a language like C to virtual machines, the readwmukl note that every computer
language at any level of abstraction also defimearalerlying abstract machine that is
able to execute its primitives [17].

The scheme shown in Figure 1C is the one typicalyployed for the
implementation of modern programming language &lrimachines such as the JVM
and the CLR. Here, the source program is translattx native code for the target

platform just before execution, through a justime compiler. Indeed, in order to limit

14

2.3. Using a Virtual Machine for Code Portability

the delay due to the compilation time, usually sbarce program is not compiled all at
once, but only one module at a time, when needaadhgl execution. This schema sits
between the former two, allowing the direct exemutdf source code on the target
machine, with better runtime performances respectthe use of an interpreter.
However, especially for general-purpose applicatiomhere the user is directly
involved, a program compiled just in time will nesarily provide poorer performances
respect to an equivalent program compiled withleféatured AOT compiler. In order
to guarantee an appropriate user experience, eodfipiler must perform a compromise
between the required compilation time and the ¢uali the generated code, which are
two parameters tied by an inversely proportiondhtien: for obtaining better target
code (e.g. providing more processing speed), thapder should perform more
complicated and aggressive optimizations, thauin would increase the compilation
time.

For this last reason, it is common to associatectimeept of a virtual machine with
poor runtime performances, because general puipts@ctive programs, either being
interpreted, or compiled just in time, are gengralower than equivalent programs
compiled with a full optimizing ahead of time corepi

If such consideration can be true for general-psepartual machines like the JVM
and the CLR, it does not necessarily apply to thsecof a domain specific virtual
machine especially designed for the developmentexsttution of packet processing
applications. In particular, we should note thatwweking data-plane applications
expose an execution pattern very different fromt tbé typical general-purpose
applications, minimizing, in the former case, thikéedences between ahead of time and
just in time compilation. Moreover, as will be d&td in the rest of the chapter, the

definition of an appropriate model for the abstnaeichine can enable the deployment

15

2. Towards Portable and Efficient Packet Procesgipglications

of special purpose optimizations, not applicablecompilers for general-purpose
languages.

In other words, the term “Virtual Machine” does mttectly imply anything about
runtime performances, since these are mainly tetthé¢ peculiar characteristics of the
abstraction it provides. In fact, the supposed sksg of Java programs on general-
purpose hardware is partially due to the featuresiged by the JVM abstract machine.
In particular, Java programs are always executedsafe sandbox, guaranteeing that no
out of bound memory accesses will compromise tts m@achine. Moreover, Java uses
implicitly a garbage collector for deleting unusebjects, freeing the programmer to
deal with manual memory allocation/deallocatione3é and other features come at an
additional cost in terms of runtime performancespeeially when using just in time

compilation, where the deployment of sophisticaiptimizations is discouraged.

2.4. JIT Compilation of Networking Data-Plane
Applications

As already said, in general purpose virtual machine the JVM and the CLR, the
use of just in time compilation responds to thedne€& enhancing the performances
perceived by the user of interactive applicatidmswever Pletzbert and Cytrda8]
point out that in such context, the JIT compilatainJava applications does not always
guarantees better performances than those obttiremayh a bytecode interpreter:

“While the just-in-time approach avoids the penalfyinterpretation, our experiments show that
the cost of compilation can significantly interrupe flow of execution; furthermore, in many cases,
better performance could be obtained by interpetihe original form rather than compiling to

native code.”

16

2.4. JIT Compilation of Networking Data-Plane Applions

In particular, since JIT compilation of a programdule is usually performed right
before its execution, the main constraint that nimessatisfied for JIT compiled code to
be more efficient than interpreted code is theofeihg:

Tint > Toit + Texec 1)
whereT; IS the time taken for interpreting a program medj;; the time taken by the
compilation process, antleyc the time spent during the execution of the resglti
machine code. Indeed, the translation to nativee adiays introduces a delay in the
execution of a program module and, in order to m&e performances, bofh;; and
Texec have to be minimized. On the other hand, suchnpeters are not unrelated, since
the quality of the machine code generated, andetpetly its speed, highly depend
from the quality of the compiler and from the pbsdgy to apply aggressive (i.e. more
costly) optimizations. A more complex JIT compitamn produce machine code that can
run faster than the code generated by a simplerkanef the increased complexity can
reduceTeyeo at the same time makeég; bigger.

In other words, engineering a just in time compii@r a general purpose virtual
machine means searching a satisfactory comproneiseebn compilation time and the
guality of the generated code. In the last yeagemal solutions for both the JVM and
the CLR have been proposed. Many of them try taced;;; sacrificing the opportunity
of applying aggressive optimizations [19][20][212]2 The code generated by these
compilers is of average quality and is usually wsllited for general-purpose
applications, where time constraints are not @iti@esides, in order to reduce the
latency of execution due to the compilation processiutions like “continuous
compilation” have been proposed [18]: while a pamgris being compiled by the JIT,
the interpreter begins executing it, until the cohbf execution can be transferred to

the generated machine code.

17

2. Towards Portable and Efficient Packet Procesgipglications

However, such considerations hardly could be agpire the domain of packet
processing applications, whose only purpose isoogss (possibly infinite) sequences
of network packets, and which are by nature nadradtive at all. In particular, for a

packet-processing module, the constraint imposed Jotakes the following form:

N > To + NTgec 2
wheren is the whole number of packets processed duriadjfiénof the application.
The same equation can be rewritten as:
Ty <N(Te = T (3)

The result is that if the JIT compiled code perfsrbetter than the interpreted one
and forn large enough, the constraint is always satisfigds means that, due to the
non-interactive nature of packet processing apiptioa, as for any other kind of data-
intensive software, the pure cost of just-in-tinmenpilation, for large it would be, is a
factor that does not directly influence the peredivperformances, and the only
constraint is that the native code generated byctimepiler should be faster than the
interpreted one.

However, the main outcome of such consideratiors gwer the simple comparison
between the performances of JIT compiled verswepneted code. Indeed, it is clear
that the major term to be considered for the desiga Just in Time compiler for a
packet processing virtual machine is the quality. @isually measured by the speed) of
the generated code. In other words, it is not resggsto trade compilation time for
runtime performances, leading to a situation vdoge to the one of ahead of time
compilation, which, being performed completely o# allows the deployment of

extremely aggressive optimizations.

18

2.5. The Network Virtual Machine

2.5. The Network Virtual Machine

The NetVM abstraction layer [6][7] defines a dadaflprogramming model for data-
plane networking software, where an applicatioexigressed as the interconnection of a
set of independent packet processing modules calietivork Processing Elements
(NetPEs). Indeed, a NetVM application can be vietvas a directed acyclic graph,
whose nodes represent NetPEs, and whose edgesseamfpreonnections between
consecutive modules. NetPEs are interconnectedeeetthem througRorts. Network
packets are like tokens that flow through the grispim a source to a sink, while being
processed by NetPEs. In particular, packet souacessinks are called respectively
input and outpuSocketswhich can be connected to both physical netwot&rfaces
and “application interfaces” that allow packetd®injected by, or sent to user-defined
control-plane modules.

The use of a dataflow model for expressing netwaylkdpplications is not novel and
is quite common [10][12][16]. This stems from thensideration that such kind of
applications can be described as a collection t#Htively independent tasks to be
performed on packets; once a module has finishecepsing a packet, this can advance
toward the next one, and the first is ready to pcaeew packet, following a pipelining
schema.

Actually, the entity flowing through NetPEs is rmtsimple network packet, but a
more complex structure calle@xchange Bufferwhich, besides the packet buffer,
contains additional information, like a timestammla special memory buffer called
the Info Memory which consecutive NetPEs can use for exchangatg dssociated to
the packet.

Figure 2 shows an example of a generic NetVM appba, viewed as a collection

of interconnected NetPEs.

19

2. Towards Portable and Efficient Packet Procesgipglications

NetVM Application

Exchange Buffer

NetPE 2

In port [\
Outport] /

NetPE 1

Input §
|
!
In port
Out ports| |\
In ports

NetPE 5

Out pc;rt
Output Socket

In port
Out port
In port

J NetPE 4

Figure 2. NetVM application viewed as a dataflow grapNetPE modules

Out port

NetPE 3

Each NetPE exposes a user-defined number of ptimtsugh which exchange
buffers can be either received or sent. The pdrtsach NetPE can be connected to
ports of other NetPEs or to Sockets. Both input angbut ports are classified in two
categories: push and pull. Based on the classeofvib ports involved in a connection,
the way in which exchange buffers are transferrefivéen consecutive NetPEs varies.
In particular, in a push connection the packetpgshed”, i.e. sent from an upstream to
a downstream NetPE, while in a pull connectiongaeket is “pulled”, i.e. requested by
a downstream NetPE to an upstream one.

Due to its dataflow nature, NetVM follows an evelniven paradigm, so the
behaviour of a NetPE module is defined by specifyanset of event handlers that are
executed when specific events happen. In partictier NetVM model defines three
main events that each NetPE should handle, thafijaidetPE initialization, i) the
arrival of an exchange buffer on an input push,@ord {ii) the arrival a request to send
an exchange buffer on an output pull port. Theesponding event handlers are named
respectively Init, Push and Pull. In particulae thit handler of each NetPE is triggered

once, before starting packet processing, and altbesrivate state of the NetPE to be

20

2.5. The Network Virtual Machine

initialized, while the Push and Pull event handlespress the actual tasks to be
performed in order to process packets.

NetPE event handlers can be programmed in a mal-lamguage called Network
Intermediate Language (NetIL), which is a stackebdasassembler providing an
instruction set specifically targeted to packetegssing applications.

The choice of making NetlL a stack-based languagecontrast to traditional
register-based schemas, is simply dictated by dbethat the implicit presence of an
operand stack avoids the necessity to assign @&xpames to the temporary results of
operations, leading to a more compact binary remtasion. Indeed, the actual
expressivity of a stack-based language is equivatethat of a register-based one.

On the other side, the choice of defining a mickleassembly language stems from
the need of making NetVM general enough to be iaddpnt from any specific high-
level language. In fact, NetlL can be an excelléstget for several high-level
languages, ranging from declarative (e.g. rule djade imperative ones (e.g. like C).

More details on the characteristics of NetlL wd given in section 2.5.4

2.5.1. Netl L Execution Model

As for any computer language, NetlL defines its cawecution model, where the
abstract architecture of the NetPE, showRigure 3 plays a major role.

A NetPE is a 32-bit stack-based processor thables @ perform integer operations
on data stored in a set of local memories. Flogbioigt operations are not supported,
because they are generally not used in packet gsoge applications. A local
processing unit executes the instructions storea tire code memory, which contains
the three NetPE event handlers (i.e. Init, PusHl).PThe starting addresses of the
handler programs inside the code memory are availabthree read-only registers,

named respectively INA (init handler address), RBAsh handler address), and PLA

21

2. Towards Portable and Efficient Packet Procesgipglications

(pull handler address), so, once a particular ewaurs, the correct program is

executed.

Current Exchange Buffer
[TStamp | PacketBuffer | Info Memory |
T

NetPE L

Code Memory |

Processing Unit —4{
| Initialized Memory |

Registers | DataMemory |
Operand Stack _ |
[PSA push handeraddr || |_[') ocal Variables Pool |
— R |

< Coprocessor Bus >

Figure 3. NetPE Internal Architecture

Instructions operate on values loaded onto theamgkestack, and results are pushed
onto the stack as well. A set of local variabldsved storing temporary data that is
guaranteed to survive only until the end of theenirhandler being executed.

Every NetPE can access one or more “virtual copsms”, for executing complex
operations, such as lookup and regular expressiatchimg, which are likely to be
implemented in hardware on network processing @lat§. More details on NetVM

coprocessors will be given in Section 2.5.5.

2.5.2. Memory L ayout

NetVM provides a rich memory model, whose structstems from the following
considerations on typical packet processing apijbcs:

The packet is the fundamental entity that is cértvathe whole application and
needs to be explicitly identified

Although different NetPEs represent relatively ipeledent tasks to be performed on
packets, it is frequent that a module needs to cenmrate to subsequent ones partial

results, in the form of single values or structudeta

22

2.5. The Network Virtual Machine

Persistent or static state (e.g. forwarding tableskup tables, counters, etc.), is
usually localized into a single module, and, predcé communication system based on
the previous points, there is no need of shardd ataong different modules

The result is a set of orthogonal memory segmedms iteflect the needs of the
programmer for storing temporary or persistentestand for communicating values
between different modules of a packet-processimdjcgtion. In particular two memory
segments flow through modules carried inside exgednffers, i.e. the packet buffer
and the info memory, while a memory that is localeach module, i.e. the data
memory, allows storing static data that should iseracross consecutive executions of
NetPE event-handlers.

The size of the info and data memory segments eaddfined through specific
directives in the source NetIL assembly, while sfme of the packet buffer is initialized
to the actual length of the incoming network framnvben an exchange buffer is created
and injected into the application. The virtual maehensures that no memory access is
performed out of each segment boundaries.

NetVM does not provide any explicit mechanism foemory allocation and
deallocation. All memory segments are staticallpcated, either in the initialization
phase, or at the creation of an exchange buffeis Thoice is mainly dictated by
performance constraints, since memory allocatich @eallocation at runtime may be
costly on some architectures, and by the consideratf the fact that in real-world
packet processing applications, persistent and atata structures (e.g. a forwarding
table) are usually created by the control plang. trough a routing protocol process or
manual configuration) and consumed in a read-cadhibn by the data-plane program.
On the other hand, if a NetVM application would c@ememory allocation mechanism
for managing complex memory structures that mustigmated at runtime, such as for

example a session table, the programmer shouldideyngo abstract the complex

23

2. Towards Portable and Efficient Packet Procesgipglications

functionality (e.g. a lookup engine) through a wait coprocessor (see Section 2.5.5),

enabling an efficient mapping on a wider varietyarfet platforms.

2.5.3. Threading mode

Even if NetPEs can be viewed as a set of concupa&eket processing tasks, NetVM
is based on a purely sequential threading modedatticular, the execution of a NetPE
packet handler is tied to the presence of an exghdmffer, and only one exchange
buffer is allowed to be processed by a NetPE aqiemific time; on the other hand, an
exchange buffer cannot be associated to more tiNgtRE at a time. This stems from
the dataflow nature of the NetVM model, for whiclick exchange buffer traverses a
pipeline of NetPEs during its journey through tipplacation, triggering the execution
of a sequence of packet handlers. In other wooilss fiven exchange buffer, a specific
instruction path of the application is executedusedjially.

Complementarily, each NetPE during its operatiope%S a sequence of exchange
buffers, and ideally, at a given time, every Netstibuld be processing a different

exchange buffer.

2.5.4. NetlL Instruction Set

The NetVM instruction set derives from the one ofieneric stack machine with
additional instructions to support packet procegsimstruction opcodes can be
subdivided into several groups; the most importergs are listed in Table 1.

In NetlL the only supported data type is 32 bitigned integer, although signed
variants of arithmetic operators are availableugng a correct handling of overflow
and underflow conditions. Memory accesses can bfrpged on 8, 16, and 32 bit
locations, and each value loaded from memory feeitero or sign extended to 32 bit,
depending on the type (signed or unsigned) of tleenary read instruction. On the

other hand, since the operand stack is 32 bit wedand 16 bit memory stores are

24

2.5. The Network Virtual Machine

performed by truncating a 32 bit value on a bytevord boundary, keeping the least
significant bits.

The highly structured layout of NetVM memories éflected in NetlL, where, for
every kind of memory (packet, info, data), thera ispecific group of access operators.
Since numeric data in network packets is storegeimvork byte order (i.e. big endian),
packet memory read and writes of 16 and 32 bitesperform an implicit network-to-
host byte order conversion; on the other hand, datstored in the info and data
memories in host byte order, i.e. the natural byteer of the target machine. While byte
ordering does not affect the internal functioning tbe virtual machine (since
conversion is automatically performed when loading storing data), this is important
when looking at the interaction of the NetVM witketoutside world. In other words, an
external program using the NetVM must provide itpacket buffer formatted in
network-byte order, while a simple read from th&einal memory of the NetPE (if
needed) will expect to find data in the host byigeo.

The NetIL instruction set provides operators theg &requently used in packet
processing applications and that are likely to roplemented in hardware in network
processing architectures, like for example bit rpalation instructions. Besides, a wide
variety of flow control operators is available; @nthe main purpose of packet
processing programs is to take decisions baseth@rdntent of network packets, the
usual jump and branch instructions are providedwel as the more complex field
comparison operators and a multi-way branch (e .switch/case construct). The latter
is particularly effective for implementing protocdémultiplexing (i.e. deciding which

is the next protocol header based on the valuespkaific field).

25

2. Towards Portable and Efficient Packet Procesgipglications

Table 1. NetIL instruction set summary

Category

Examples

Description

Arithmetic and Logic

Bit Manipulation

Flow Control

Locals
Memory Access

Field comparison
Packet transfer
Stack management

add, sub, mul, neg

shl, shr, rol, ror

and, or, xor, not

set.bit, clear.bit, flip.bit, test.bit
clz

find.bit

jump, jcmp.eq, jcmp.neq, jcmp.l, ...

switch

call, ret

locload, locstore

pload.8, pload.16, pload.32
pstore.8, pstore.16, pstore.32
iload.8, iload.16, iload.32
istore.8, istore.16, istore.32
mload.8, mload.16, mload.32
mstore.8, mstore.16, mstore.32
jfield.eq, jfield.ne, jfield.It, ...
pkt.send, pkt.receive

push

pop

dup

Coprocessor Interactioncopro.in, copro.out

copro.invoke
copro.init

Basic arithmetics

Shift and rotate

Bitwise logic

Bit test, set, flip and clear
Count leading zeros

Find the first bit set

Jump and branches
Switch/Case construct
Procedure call and return
Local variable load and store
Packet memory load
Packet memory store

Info memory load

Info memory store

Data memory load

Data memory store

Packet buffer comparisons
Packet send and receive
Push constant

Discard top of the stack
Duplicate top of the stack
Coprocessor reg read/write
Invoke coprocessor operation
Coprocessor initialization

2.5.5. Coprocessor Abstraction

Since packet-processing applications usually relyacset of functionalities that are

often implemented directly in hardware on many reknprocessor architectures (e.g.,
Content Addressable Memories for fast table lookinashing, string matching, etc.),
the NetVM model includes the concept of virtual mm@ssors, i.e. a way to make such
features available to the programmer through a-defihed interface. A coprocessor is
viewed by the application as a black box providsmecific operations; while its
coherent interface guarantees the portability efgbftware on different platforms, its
implementation may vary from platform to platforim.particular, on architectures that
do not provide any hardware acceleration, copracesshould be emulated by
software, while on architectures providing spegatpose features, coprocessors may

be mapped directly on hardware.

26

2.5. The Network Virtual Machine

From a logical point of view, a NetVM coprocessercomposed of a set of directly
addressable 32 bit registers and a local processiitg as shown irFigure 4. NetvM
Coprocessor Architecture Registers can be accessed through the NetlL uctgins
copro.in and copro.out , while the instructioncopro.invoke is used for

triggering the execution of a specific operatiamnirthe processing unit.

o [BesTlw
Reg 2] w

32 :
: ' Processing
*ﬁ W ynit

—>
R/W

I

Figure 4. NetVM Coprocessor Architecture

In particular, the operations to be performed faariting a coprocessor function are
the following:

Write the appropriate values into the coprocessguti registers through the
copro.out instruction

Invoke a coprocessor operation throughdbpro.invoke instruction

Read the result from one or more coprocessor outpgisters through the
copro.in instruction

Since some complex functionalities, such as thesofte regular expression
matching, need to access the entire packet buffg. for scanning the payload in
search of a string), the NetPE can release theaegehbuffer and pass it to a specific

coprocessor through tleepro.exbuf instruction.

27

2. Towards Portable and Efficient Packet Procesgipglications

Coprocessors may also support an initializationsphihat is invoked through the

copro.init instruction.

2.6. Why NetVM Enablesboth Portability and
Efficiency

The abstraction layer introduced by the NetVM exgsoa set of key features that,
while enabling the portability, also allow an eificst mapping of packet processing
applications on extremely heterogeneous architesturhis is possible because the
NetVM programming model favours the sharing of valg information on the
semantic of the application between the programamer the compiler dedicated to
mapping it on the target architecture. In particuiithe use of constructs borrowed
from the application domain partially constrain freedom of the programmer respect
to the use of more general programming languadesd, on the other hand, it allows
the compiler to have a more detailed view on thentions of the programmer,
allowing it to perform a more efficient mapping,dano deploy more aggressive
optimizations that a compiler for a general purpasguage could not.

This Section analyzes how such concepts are cabtardletVM, and it will point
out how the features of its programming model emabther the portability of user
applications, either an efficient mapping on a widage of heterogeneous hardware

architectures.

2.6.1. Dataflow programming model

As described in Section 2.5, NetVM is based ontafltav model of network data-
plane applications, which can be usually descrilasda collection of relatively
independent tasks to be performed on packets. dlloiws to make explicit the coarse-

grained parallelism between functional modulesaening the possibility of efficiently

28

2.6. Why NetVM Enables both Portability and Efficig

mapping the application on multi-core processofy.[Besides, since the programmer
has to deal with simple event handlers that araiesgdlly triggered by network
packets flowing through application modules, igiste easy understanding the logic of
the software that can be viewed as the compositfigelf-contained functional blocks.

With respect to these points, other major programymmodels like the purely
sequential and the parallel ones are both subgedifterent kinds of problems. The
former one, even when modular and while being mmatural for the programmer,
exposes no relevant information to the compiler éatracting the coarse-grained
parallelism between modules, so complex and pagssieffficient analyses need to be
put in place in the compiler when needing to patiakk the code on multiple cores [23].
On the other side, classical parallel programmiegy.(multithreading), based on
concurrent modules sharing state between themspaifferent problems to both the
programmer and the compiler, becaugetl{fe task of protecting shared state against
hazards is left to the developer through synchaiimm primitives like locks,
semaphores and mutexes, leading to software thHard to understand and maintain,
and (i) the applications based on concurrent tasks aratly, while can be easily
mapped on multi-core environments providing haréwsupport for synchronization
and locking primitives, may lead to an inefficianapping on single core processors,
and cannot be targeted to massively pipelined tcthoires, like systolic array network
processors. Moreover, while the compiler can easdgrform intra-module
optimizations, the application of inter-module andpplication-wide global
optimizations in concurrent programs can be exthemigallenging.

The event-based nature of the dataflow paradignichwmixes both communication
and synchronization, allows to prune away many ciof non-determinism that are
intrinsic in multi-threading, as noted in [24], titmajor advantages for both the

programmer and the compiler. With respect to tieedawhen the dataflow graph of

29

2. Towards Portable and Efficient Packet Procesgipglications

modules is acyclic (and in our case it is), ibsremely simple to translate it in a single
control flow graph, obtaining a completely sequanprogram, by inlining consecutive
modules.

From the point of view of portability and efficigncthis enhances the chances of
mapping NetVM applications on extremely heterogeseplatforms, such as single
core, multi core, or even systolic array networlogassors, without performance
penalties, because the compiler has a completeatietive application, and can perform
aggressive inter-module optimizations and, on nrudte architectures, apply any
suitable strategy for automatic parallelizationsefjuential code, as those presented in

[23].

2.6.2. Domain-Specific | nter mediate L anguage

NetlL, the language employed for programming Net\d@plications, has been
designed to be general enough for being the idaajet for multiple high-level
languages and, at the same time, for providingdegaate level of abstraction in order
to allow the portability of packet processing sa@fter and an efficient mapping across
several heterogeneous network processing platfdnrfact, NetlL has been profitably
employed for the development of two high-level teards, mainly for packet filtering
and classification languages, which have been preden [25][26].

In contrast, other frameworks for the developmehefficient packet processing
applications [13][14][15][16], tie their solutioro ta high-level programming language
(e.g. domain specific, or derived from the C largg)a with the result of limiting the
generality and the flexibility of the proposed agpgurh.

As pointed out in Section 2.2, besides the mentiom®blems from the point of
view of generality, some of the solutions propodsd both the industry and the
academia suffer also from the point of view of pbitity, because of the choice of

incorporating in the high level language the feaguthat are specific to the target

30

2.6. Why NetVM Enables both Portability and Efficig

architecture, or to its low level programming modebr example, the IXA SDK,
provided by Intel for programming the network premers of the IXP family, relies on a
modified version of the C language, where key as$gimstructions of the target ISA
(Instruction Set Architecture) are exposed to kb#hprogrammer and the compiler as
intrinsic functions (i.e. functions whose semamsidknown by the compiler), with the
result of tightly coupling the software to the gfiecarchitecture and preventing its
portability. Another approach that may pose someblems for portability over
heterogeneous architectures is the one proposdd RetLang [15], where the high
level language exposes constructs representing s,tagjueues and explicit
synchronization primitives that are tied to the tatireaded programming model of the
target platform (i.e. the Intel IXP2400).

NetlIL, instead of abstracting the hardware fundliies of a specific architecture,
provides constructs that abstract the functioraithat are commonly needed by packet
processing applications, making them availabldéoprogrammer. A backend compiler
can then map them efficiently on the hardware fegtuhat the target platform may
provide, with the result of enabling flexibilitypgability and efficiency, all at the same
time. At some extent, this can be viewed as a @dimation of the approach proposed
by [14], which presents a compiler for a modifiegtsion of the C language, where the
packet manipulation functionalities commonly used networking applications (e.qg.
packet access, bit manipulation, etc.) are expasddtrinsics, which can be efficiently
mapped on the target platform through the generatibthe appropriate assembly
instruction sequences, instead of relying on paéytnefficient library function calls.
The key point that the two solutions share in comnsathe aim of rendering explicit in
the source language the most common packet matigrulaunctionalities, as well as
other features borrowed from the specific applaratdomain, thus providing an

adequate abstraction layer to the programmer atviay the compiler to perform

31

2. Towards Portable and Efficient Packet Procesgipglications

more aggressive optimizations based on the knowledigthe semantic of such
operations. Moreover, since NetlL also aims at dpegeneral enough to support
different kinds of applications it is not tied toyaspecific high-level language and it
adequately mixes low and mid level constructs, ntleo to be an effective target for
several (possibly novel) high-level languages.

As a simple example, NetIL provides thwitch-caseconstruct, which is common in
many high-level languages. In particular, the pmeseof such construct is very
important, because it is widely used in packet @ssing programs for demultiplexing
protocol headers, and making it explicit in thegaage allows a backend compiler to
chose how implement it in the most efficient waytbe target platform, for example by
exploiting a TCAM-based lookup coprocessor, asiSeet.5.3.3 will show.

Another example is given by the field-comparisod &it-manipulation instructions
of NetIL, which correspond to functionalities commhp used in packet processing
programs. Even though it is likely that some NPWhédectures provide similar
instructions, the NetlL abstraction completely lsidbow level details from the
programmer, who simply use those them as packeepsing primitives, delegating to
the compiler the task of finding an efficient maggpon the target platform, either
based on hardware primitives, where these are adblajl either emulated in software

where these are absent.

2.6.3. Structured Memory M ode

As described in Section 2.5.2, NetVM provides aog@trthogonal memory segments
that reflect the needs of the programmer for stptemporary or persistent state, and
for communicating values between different modulek a packet-processing
application. This enables a specific memory locatm acquire a semantic meaning for

both the programmer and the compiler.

32

2.6. Why NetVM Enables both Portability and Efficig

In particular, the presence of an explicitly idéable memory representing the
packet buffer is extremely important, either beeassveral Network Processors (e.g.
the Xelerated X11 and the Cavium Octeon) givesipecial treatment, either because, as
will be pointed out in Section 4.5.1, even on gahpurpose architectures like the Intel
x86, this enhances the opportunity of deployingyveiffective special purpose
optimization techniques.

On the other hand, the flat memory model employedther programming models
like the one of the traditional C language, bespleventing the deployment of special
purpose optimizations specifically based on theaaneaning of a memory buffer (e.g.
the buffer containing packet data), it cannot b@mpeal on some NPU architectures, like
those of the Intel IXA family, or the Xelerated X1Which are based on an explicit
hierarchy of memories. The solution commonly emetbin such cases is to extend the
language, introducing special storage classesnforming the compiler about which
memory of the target architecture should be usedcémtaining a user buffer. For
example, the Intel IXP2xxx network processors pieviseparate interfaces for
accessing SRAM and SDRAM memories, which are charzed by different
latencies, costs and sizes. Besides, each progesdeament of the NPU (called
“Microengine”) owns a small and fast private memarglled “scratchpad”. The
programmer is in charge of deciding in which ofsenemories should reside each
specific portion of the state (e.g. usually padkata is stored in SDRAM, while single
static values like counters are stored in the sbpstd memory), so the Intel IXA SDK
provides a programming language derived by C (Mingine C) [27], which has been
extended with a set of architecture-specific sterapsses for allowing to specify at
which kind of memory a pointer should refatigure 5 shows an example of such
scenario, where the packet buffer is mapped on SIDRPe storage class of a pointer

is specified through the declspec keyword.

33

2. Towards Portable and Efficient Packet Procesgipglications

It appears obvious that such kind of solutions,clvlmake visible the characteristics
of the target platform to the programmer, posaa@nstlimit to portability. On the other
side, NetVM memories reflect the purpose for which programmer use them, i.8. (
accessing the packet buffer (packet memori), fommunicating values between
consecutive modules (info partition), and (iii) rebg persistent and static data (data
memory). No information is given to the programrabout which kind of memory will
be actually used for mapping them on the targehimcture, since such task is
completely left to the compiler, which can alway®se the more efficient solution with

the result of enabling portability while still enswg efficiency.

Microengine C v

void process(uint8* packet, uint16 len)

if (*(uint16¥)&packet[12] == 0x800)
processIP(&packet[14]);

return;

}

Intel IXP 2xxX

<= —=>

Figure 5. Use of architecture-specific storage-elager mapping Intel IXP2xxx memories in C

SDRAM SRAM

2.6.4. Virtual Coprocessors

Another aspect that is very critical for efficigntmapping packet processing

applications on network processor architecturesthis exploitation of advanced

34

2.6. Why NetVM Enables both Portability and Efficig

functionalities that may be implemented in hardwasecoprocessors (e.g. hashing,
lookup, string-matching, etc.).

The available solutions can mainly be ascribed te @f the followings: i
encapsulating advanced features in function libgrii) exposing them as intrinsics or
compiler known functionsii{) using inline assembly. Unfortunately, each onéhete
methods suffers from the point of view of portagiliFirst, libraries are based on the
concept of function call, which is not always asble in all network processor
architectures, e.g. those of the Intel IXP famdiy,on systolic array network processors
like the Xelerated X11 [4]. Moreover, libraries aseftware components that are
compiled and optimized separately, thus preventaggressive application-wide
optimizations. Intrinsics may represent a solutibecause the compiler know their
semantic and can map them efficiently on the abkaldardware features, however,
when they abstract low level functionalities, tlesult is source code highly tied to the
target architecture. Finally, inline assembly pdeg a high potential from the point of
view of efficiency, but it highly prevents portabyl as well as maintainability and
dependability.

The solution proposed by NetVM virtual coprocessians be viewed as an extension
of the concept of “compiler known functions”. Inctavirtual coprocessors are more
like “compiler known objects”, i.e. modules witheih own state and with “methods”
that provide complex functionalities whose operai® specified by the NetVM model,
and which a backend compiler can map in the moftierft way on the target
architecture. In particular they can be implemenbsdleveraging the presence of
special purpose hardware, if present, or emulateditware otherwise.

Even though it would be possible for a NetVM vilttaaprocessor to abstract a real
hardware coprocessor, this would lead to similabj@ms from the point of view of

portability, as those pointed out before. Indeedtual coprocessors, instead of

35

2. Towards Portable and Efficient Packet Procesgipglications

abstracting specific hardware functionalities, tlagtract “macro-functionalities” that
are commonly employed in packet-processing apjphieat e.g. exact-match lookup,
string matching and regular expression matchingablmg the portability of
applications across heterogeneous architectureggarticular, for example the NetVM
lookup coprocessor could be implemented using aAM@n some architectures (e.g.
the Xelerated X11), or as a hash table, possiMgréging a hashing coprocessor like
the one provided by the Intel IXP2xxx network presars, or finally it could be
implemented completely in software (e.g. througlvimary search tree) on general
purpose platforms where no specific hardware acagbe is present, as depicted in

Figure 6.

Lookup Coprocessor

Primitives:

Insert(key, val) Lookup
Lookup(key) Table
Delete(key)

Update(key, val)
NetVM

.. Target Architecture

P v e

E T-CAM } EBinary-Tree} E Hash-table }

Hardware-based Software-based
Implementation Implementations

Figure 6. Possible mappings for a lookup coproaesso

2.7. Conclusion

This chapter highlights the need for a suitabletrabgon for programming high-
speed packet processing applications, capabldayfiab them to be both efficient and
portable across a wide range of special purposkitactures. The NetVM virtual

machine is introduced as a possible solution, shgwiat portability and efficiency

36

2.7. Conclusion

might not be considered as conflicting requiremerts particular, the NetVM
programming model, by capturing the peculiar charastics of the network processing
application domain, provides the programmer with adostraction layer capable of
completely hiding the details of the actual exemuplatform, thus enabling portability.
On the other hand, it also allows a compiler impating it to have a more detailed
view on the semantic of the application, thus engbkhe deployment of special
purpose optimization and mapping techniques, wfaebur runtime efficiency.

The goodness of such approach will be demonstratdek second part of this thesis,
where the implementation of the NetVM model in dtivtarget optimizing compiler is

described, and performance evaluation results rasepted.

37

3. Decoupling Programs from the Knowledge of Proté®mrmats

3. Decoupling Programsfrom the
Knowledge of Protocol Formats

3.1. Enabling Protocol-Agnostic Packet Processing
Applications

Packet processing applications such as routeesydits and IDSs, rely on protocol
demultiplexing functionalities for determining tharesence of particular protocol
headers in packets, and for extracting the actalales of specific fields to be used for
performing more complicated operations. For exampile forwarding process in a
router needs to analyze the value of the destinatduress contained in IP packets for
determining the next hop, while a firewall or an lA@odule needs to know the values
of a given set of fields for performing packet sléisation.

The traditional approach of hardcoding the fornfgirotocol headers in the software
of the abovementioned type of applications, altloloiging efficient in terms of runtime
performances, suffers from non-negligible limitasowith respect to flexibility and

maintainability. In particular, developers must @éaa deep knowledge of protocol

38

3.1. Enabling Protocol-Agnostic Packet ProcessipglEations

header format, and adding support for new protoicofgies modifying the application,
debugging and testing it again. Besides, differgpplications that rely on similar
protocol decoding functionalities are usually basadcustom code, which results in a
multiplication of the amount of software to be wait and maintained, with a
corresponding increase in the incidence of bugssandrity flaws.

An effective way to overcome such problems wouldtdeasolate the knowledge
about the format of network protocols in a sepamtelule, by using an application
independent language for describing the binarydayd protocols, and by creating a
common database of protocol descriptions, usable skyeral heterogeneous
applications. This is the case of the Network Rrot®escription Language (NetPDL)
[28], formerly proposed by the NetGroup at Poliieondi Torino, which aims at
describing the format of network protocol heademsl &ncapsulation rules between
different protocols. An API provides the appropeiftinctionalities for interacting with
the protocol description database, allowing usegm@ams to be completely unaware of
the exact location of header fields in network maskand delegating to an external
module the task of demultiplexing the headers prtesea packet buffer and extracting

the actual values of specific fields, as shownigufe 7.

39

3. Decoupling Programs from the Knowledge of Proté®mrmats

User Application (e.g. Firewall) Packet Processing API

[.]

if packet contains ip

{

Demultiplex protocol headers
searching for IP

get(ip.src, ip.dst); ip.src andip.dst in the
current packet
[...]

} {{Pva format

Extract actual offset and size o}

i Version: 4 bits

i HeaderLength: 4 bits Protocol

' TOS: 8 bits

i Total Length: 16 bits Database
i Identification: 16 bits (NetpDL)
 Src: 32 bits

i Dst: 32 bits

Figure 7. Decoupling applications from the knowled§erotocol formats

However, if the depicted scenario introduces a hilgxibility, given by the
possibility of seamlessly adding support to nowvelt@cols without any modification to
applications, its applicability in the implementati of high-speed data plane network
devices highly depends on its capability to compeiid the runtime performances
provided by the hardcoded approach.

Indeed, NetPDL has been profitably used for impleting a packet-decoder [28],
I.e. an engine for parsing the content of netwagkets and extracting the actual values
of each field, according to the information proxdd®y an external protocol description
database. Such module is now part of the NetBear{ib[29] and it is used for
visualizing packet-data in the Analyzer [30] netkwaononitor. However, the packet-
decoder is based on a step-by-step interpretaticheo NetPDL database, and even
though its performances can be reasonable for flineo&pplication such as a network
sniffer, they are not compatible with the requiretseof high speed data-plane
applications, such as routers or firewalls, whielvéento cope with ever increasing line
rates.

A solution capable of guaranteeing performances dn@ comparable to those of

completely hand-written programs, consists in fietimgy protocol descriptions into

40

3.1. Enabling Protocol-Agnostic Packet ProcessipglEations

native code through a compiler. As shown in Figdirethe NetPDL language could be
translated almost one by one into a C or C++ moditle the same capabilities of the
one based on NetPDL interpretation. However, the afsstatic compilation would

highly mitigate the advantages of having an exleraad possibly dynamically

updatable database of protocol descriptions, bec#lus packet processing module
generated from descriptions would suffer from samiproblems of its hardcoded
counterpart. Indeed, adding support for a new paitevould require extending the
external protocol database, regenerating the modnte linking it against the user
application. Moreover, such scheme would preverdgpiimize and tune the generated
code based on the needs of the user. For instant® depicted scenario, even if the
user application only requests the extraction efifhsrc and ip.dst fields, the packet
decoding module statically generated from NetPDlulaontain code for extracting

the values of all the fields of the IP protocoliwa resulting lack of efficiency.

User Application (e.g. Firewall) Packet Processiigj A

Protocol

[] s
Demultiplex protocol headers}

i{f packet contains ip L searching for IP Database
E _ (NetPDL)
get(ip.src, ip.dst); xtract actual_offset an_d size o}
ip.src andip.dst inthe
[L current packet
}
NetPDL
Pack% ProcesseT Compiler
Data

Packet processing module
(e.g. C/C++ function)

Figure 8. Generation of a packet processing moflafe protocol descriptions

The second major argument of this thesis is thabraer to support an efficient
decoupling of the logic of packet processing agicns from the knowledge of the
format of network protocols, dynamic compilatiorhaiques must be put in place, for

generating code to be executed on a configuraldkeparocessor, thus enabling the

41

3. Decoupling Programs from the Knowledge of Proté®mrmats

dynamic update of the protocol database and thdogment of any suitable
optimization.

The solution proposed here relies on an additidamaguage for defining packet
filtering and field extraction rules (NetPFL), aod a compiler for translating such rules
into a packet processing program for the NetVM,oatding to the information on
protocol format and encapsulation contained in #°Bé& database.

The overall architecture is outlined in Figure ®tRFL provides an interface based
on simple packet processing primitives that alldvagng NetPDL packet decoding
functionalities based on the actual user needs é&pecifying the information to be
extracted from network packets). Besides, sincedpberation of the NetVM-based
packet processor can be dinamically configurediimply changing the program to be
executed, the proposed solution enables a highedegf flexibility, given by the
possibility to adding support to new protocols kpydating protocol descriptions at
runtime. The just-in-time compilation capabilitie$ NetVM guarantee the runtime

efficiency of the approach.

42

3.1. Enabling Protocol-Agnostic Packet ProcessipglEations

User Application (e.g. Firewall) Packet Processiig) A

[.] L ~

Demultiplex protocol headers

if packet contains ip searching for IP

{ . J
Extract actual offset and size of)

ip.src andip.dst in the current

[..] U packet J

A 4

~

get(ip.src, ip.dst); N

}

NetPFL filtering language: Processed
“ip extractfields(ip.sr, ip.dst) PaCKEt Data
l NetvVM — —— |
T0 e
NetPDL/NetPFL|Program
Compiler Y

Figure 9. Complete view of the proposed packet @msing architecture

As a proof of concept, an optimizing compiler foettranslation of NetPDL-based
packet filtering rules into a program for the Netlw®irtual Machine has been designed
and implemented, demonstrating that NetPDL canffeetevely used for driving the
dynamic generation of efficient packet processiragmms.

The rest of this Chapter will give an overview & tmain building blocks, namely
NetPDL and NetPFL (NetVM has been presented in @had), while the compiler
architecture, and the deployed code generationniggbs will be discussed in the

second part of this thesis.

3. Decoupling Programs from the Knowledge of Proté®mrmats

3.2. Related Technologies. NetPDL and NetPFL

3.2.1. NetPDL

The NetPDL language enables the description of poyocol headers are laid out
and chained together inside network packets. Sinisebased on XML, specific tags,
characterized by several attributes and organiadderarchical structures, identify the
elements of the language.

Describing a protocol in NetPDL means enclosingairsection identified by the
<protocol> tag the list and the binary format of the fieldattbuild up a header, as
well as the encapsulation relationships that caprbsent between different protocols.
Figure 10shows a sample NetPDL specification for the Etéeprotocol header. In the
<format> section we find the description of the binary latyof the header as a list of
<field> elements. The<encapsulation> section, on its side, identifies the
conditions that need to be met for other prototmlse encapsulated into the one being
described. For instance, tkmextproto> element, acts as a pointer to the next
protocol header.

NetPDL allows the description of complex headersugh the definition of several
kinds of header fields (e.g., fixed, token deliditend variable size fields, bitfields,
padding and more) and by using structured conlo@l tonstructs, such asthen-else
switch-case and loop. Conditional elements can appear also in the
<encapsulation> section for describing complex encapsulation rules

While such features are sufficient for the deswipof L2-L4 protocols, in order to
support the description and the recognition of katqcols, NetPDL provides advanced
features that will be briefly outlined here. Moretails on the NetPDL language can be

found in [31].

3.2. Related Technologies: NetPDL and NetPFL

<protocol name="Ethernet" longname="Ethernet 802.3" >
<format>
<fields>
<field type="fixed" name="dst" longname="MAC Dest." size="6"/>
<field type="fixed" name="src" longname="MAC Source " size="6"/>
<field type="fixed" name="type" longname="Ethertype " size="2"/>
<[fields>
</format>

<encapsulation>
<switch expr="buf2int(type)">

<case value="0x0800"> <nextproto name="#IP"/> </cas e>
<case value="0x0806"> <nextproto name="#ARP"/> </ca se>
</switch>

</encapsulation>

</protocol>

Figure 10. NetPDL description of the Ethernet protteader

3.2.1.1. Protocol verification

TCP/IP has an ambiguous mechanism for applicaagarl de-multiplexing. For
instance, while a value 0x800 in the ethertypafighiquely identifies an IP packet, the
value “80” in the TCP port does not necessary ntkahthe packet contains an HTTP
payload. For instance, several peer to peer apiplicaise this port using custom
protocols other than HTTP. In order to allow sofoan of validity check on the
protocol to guarantee that the packet really istwithappears to be, NetPDL provides
the <verify> construct, which includes both an expression arsgtaof associated
actions. The verification can either returfodnd ” or “not found ”, or it can
postpone the result with adéferred ” or “candidate ” return code. The
“deferred " is used for protocols that require several pachetbe analyzed in order
to return an exact answer (e.g. RTP, Skype). Varsa, the ¢andidate " is used for
protocols in which the payload can match severatogols at the same time. For
instance, KAZAA communicates through HTTP messatiedt contain a special
optional header; hence KAZAA packets are also Mdlld'P ones. However, NetPDL is
able to differentiate among these protocols ané e correct one (in this case, the

check against the HTTP signature returcantiidate ”, and this protocol will be the

45

3. Decoupling Programs from the Knowledge of Proté®mrmats

correct one unless a check against another protetimins found ”, in which case the

second protocol is chosen).

3.2.1.2. Session Tracking

Session Tracking is mostly used to keep track oP T&essions. This mechanism
leverages a simple table containing the 5-tuplé ithdudes the ID of known sessions
and the associated application-layer protocol.

In order to implement session tracking, NetPDL miedi a special bi-dimensional
variable, the<lookuptable> element, which supports an arbitrary number dtigie
Fields are either keys to locate entries (“primiaey” in database terminology) or data
(such as protocol ID) related to the given element.

Although bi-dimensional variables can have any tisey are particularly useful for
transport-layer session tracking. These entrigs [6CP sessions) have the necessity of
being properly managed, e.g., we must be able tgepzombie” TCP sessions that are
no longer active. For this reason, NetPDL can assm@n attribute to each entry,
defining its validity. An entry can last forevem{ass deleted by an explicit command in

the NetPDL file), or it can be automatically cledadf after a given inactivity time.

3.2.1.3. Support to application-negotiated sessions

For the case of applications that dynamically neg@the parameters of the session,
e.g., the case of FTP data connection whose partdymamically negotiated in the FTP
control channel, or SIP sessions that dynamicabotiate RTP ports, NetPDL supports
a set of processing elements through<brecute-code> section. For instance, the
definition of the FTP protocol will contain a piecd# code that recognizes the
negotiation of a new FTP data session, and insertew entry into the TCP session

table. Usually these entries do not have to goutlinca verification process — i.e., if the

46

3.2. Related Technologies: NetPDL and NetPFL

“master” session is trusted (it has already beetfie® before), its “child” sessions

should be trusted as well.

3.2.2. Defining actions: NetPFL

Even though NetPDL provides features that go beytmase of a completely
declarative language, its only purpose is the daswn of the format of network
protocol headers and it provides no direct meanglé&fining actions to be executed
when specific conditions are satisfied. Here is n@htthe Network Packet Filtering
Language (NetPFL) [32] comes into play.

NetPFL is based on a filter-action model to expraessket filtering conditions and
packet handling statements, such as acceptingketfpan extracting the actual values
of a set of fields. The filtering expression canldased or(i) protocols (i.e. a filter is
satisfied if the packet contains the specified grot header), anli) field values (i.e. a
filter can be specified as an expression involvihg value of one or more header
fields). In NetPFL, basic predicates can be compa@éh the Boolean operators AND,
OR, and NOT in order to express complex filtersic8ithe filtering expression is an
optional part of a NetPFL statement, when a filsemot specified, the action should be
applied to all incoming packets.

Figure 11 shows two sample NetPFL rules: the first representomplex filtering
expression based on the presence tipa header and on a condition on fpesrc
field, while the second is a field extraction staémt for returning the values of the

ip.src ,ip.dst ,udp.sport andudp.dport fields contained in eaaldp packet.

ip.src == 10.0.0.1 and tcp returnpacket as stream 1
udp extractfields(ip.src, ip.dst, udp.sport, udp.dport) as stream 2

Figure 11. NetPFL expression examples.

NetPFL is built on top of NetPDL and its main tokefi.e. protocol names and
header fields) are not specified explicitly in fhaguage, but are defined in a NetPDL

47

3. Decoupling Programs from the Knowledge of Proté®mrmats

database. In other words, the expressionsgite 11 make sense only if the NetPDL
description contains the definition of the spedifigrotocols and fields, i.e. a protocol
named fp ” whose header contains the fields namedc*’ and “dst ”, a protocol

named tcp ”, and a protocol namedutlp” with two fields named respectively

“sport " and “dport
For a detailed specification of the NetPFL langyaiease refer to [32].

3.3. Conclusion

This Chapter outlines the architecture of a possibblution for efficiently
decoupling the logic of packet processing appliceti from the knowledge of the
format of network protocols, and presents its nmiiding blocks.

Using the NetPFL language, a user application pagify the kind of information to
be extracted from network packets, while the acfoainat of supported protocols
resides in an external NetPDL database of protdestriptions. NetPFL rules are used
for driving the translation of NetPDL descriptionto code to be executed on the
NetVM virtual machine, which can be compiled justiime in order to guarantee
runtime performances.

This approach enables both flexibility and effiggnovercoming the limitations
either of an approach based on interpretationgeibi an approach based on the static
compilation of NetPDL descriptions.

The validation of such solution is presented in skeond part of this thesis, also

reporting performance evaluation results.

PART Il. Validation

49

4. Implementing the NetVM M odel

4.1. Introduction

In order to demonstrate the goodness of the NetVdyramming model and its
capability to enable the creation of portable affttient packet processing software,
the NetVM architecture has been implemented awtalple runtime environment and a
multi-target optimizing compiler infrastructure. @ lsompiler is able to operate either as
a Just in Time or as an Ahead of Time compiler,egating native or assembly code,
depending on the target platform. Optimizationsknam two different levels: the higher
level is architecture-independent and operateshercode removing redundancies and
useless computations, whereas the lower one isttapgcific and performs the actual
mappings between the NetVM model and the targethmag possibly exploiting
special purpose hardware units available on moNé1ds.

Experimental results reported in Chapter 7, dematestthe effectiveness of the
approach, showing that thanks to the charactesistxposed by the NetVM model, the
generated code has performances often better Hume tobtained from hand-written
programs compiled with state-of-the-art generappae compilers.

51

4. Implementing the NetVM Model

4.2. The NetVM Framework

The NetVM model requires a runtime environmentracs a communication layer
with the external world. Its main function is toopide I/O facilities, to handle the
coprocessors implementation (hardware or softwang) to manage the application’s
resources, e.g. memory allocation. In fact a Netsfdlication needs to receive packets
from input interfaces and to forward them to outiptérfaces after the processing. Such
operations are heavily dependent on the hardwameacteristics. In other words, the
runtime environment must implement an abstractiayed making all such details
transparent to the application and to the programme

On the other hand, since a NetVM application retiesdifferent elements (NetPEs,
coprocessors, etc), whose configuration can beerthbg the programmer, the runtime
environment has to (1) allow the programmer to ter@ad configure each component,
and (2) implement these elements on different tachires either by exploiting

hardware modules or by supplying software implemigm of unavailable components.

NetVM Components Implementation

(B) Interpreter
Optimizing Compiler
Architecture-Independent (JIT/AQT)
Functions

Architecture-Dependent

(©) Functions Compiler Backends

Target Architectures
(e.g. X86, Octeon, X11)

Figure 12. NetVM Framework Architecture

The NetVM model is implemented as a framework, (séntogical layout is shown

in Figure 12, which comprises a portable runtime environment @ multi-target

52

4.3. Compiler Infrastructure

optimizing compiler. At the top of the framework)(8its a programming interface that
allows the programmer to instantiate and managermi@ NetVM components in the
user applications. The middle layer (B) represetits core of the framework,
implementing the architecture-independent partshef runtime environment and a
NetlIL interpreter, as well as the target-indepemndemponents of the compiler. Finally,
at the bottom of the structure (C) we find targetafic modules, i.e. the compiler back-
ends and the architecture-specific parts of the&imenenvironment, which implement
the actual mapping of the NetVM functionalitiese(i.instruction set and virtual

coprocessors), on the target architecture.

4.3. Compiler Infrastructure

As Figure 13shows, the compiler follows a classical 3-stagelehd=irst, the compiler
front-end builds a medium-level intermediate repreation (MIR) of the source
program, while checking its formal correctnessnthiee MIR is fed into the optimizer,
whose objective is to reduce code redundanciesiraptbve efficiency. A platform-
dependent back-end lowers the optimized MIR to & leevel intermediate
representation (LIR), which is very close to thesemsbly language of the target
architecture and performs additional optimizatidasally, the resulting machine code
Is emitted.

A program represented in MIR form is described &staf expression trees, whose
root nodes represent statements (i.e. assignmentantrol flow operators), while leaf
nodes represent the operands of an expressionc@gtant values or registers). The
LIR form, instead, represents the program as aesemuof three-address instructions
closer to the target machine language. The reasonniplementing a multi-level
intermediate representation is based on the neatklty the lowering phase and to

provide as much information as possible on the®program to the optimizer. This

53

4. Implementing the NetVM Model

makes it possible to perform more aggressive opttions, based on the knowledge of

the semantic of the constructs employed by therpromer, as will be pointed out in

Section 4.5.
T High level High level High level
Front-end Front-end Front-end
Front-Ends
7777777 |~
‘ NetlL bytecode
l NetIL bytecode front-end l
L - Target
NetVM Back-End Tree-based Mid-Level IR Independent
(SsSA) Phases
¥
Mid-level optimizations
I BUR Instruction Selection
Target
Back-End + Specific
Target-Specific Phases
l Transformations

v
Target Assembly Languﬁ

Figure 13. Compiler Architecture

The whole compilation framework is designed in adodar fashion, in order to ease
the task of adding new back-ends. In particulage #malysis and optimization
algorithms are able to work on different interméeli@presentations, and each back-end
can configure the optimizer in order to apply otilg transformations that are suitable
for the target platform.

The compiler can generate either machine code imang following the Just-In-
Time paradigm, or assembly files as an Ahead-OfeTaompiler. In the latter case, the
programs generated by the compiler are assemblegiby third party tools (e.g. GCC

or the development tools provided for the spetdrget platform).

4.4. The Compilation Flow

Although a source program can be translated dyréatib the target language, compilers
are generally organized as a series of phases,aéadhich apply a distinct transformation

54

4.4. The Compilation Flow

to the source program. This scheme creates thefoeedh intermediate representation for
the code that is continuously transformed durirggyadbmpilation process. Since the details
of the target language should be confined to tmepdler backend as far as possible, the use

of a target-independent intermediate providesaleviing benefits:

* Retargeting is facilitated: a compiler for a di#fat target architecture can be created

by only creating a new back-end

* All target-independent optimizations can be appli¢d the intermediate
representation before passing it to the backend

The NetVM compiler uses two different representaidor the program being
compiled: a Medium Intermediate RepresentatilikR and a Low Level Intermediate
RepresentatioLIR. The former is a machine-independent representatieated by
the compiler front-end and it is transformed irte tatter, machine-dependent, by the
instruction selection phase of every backend.

In MIR form, the code is described as a lissta#tements each statement represents
a tree whose nodes represent expressions. Thetaggeemployed in this phase are
NetIL ones, allowing the compiler to exploit theokviedge of the semantics of domain-
specific constructs exposed by the language, agqmbbut in Section 2.6. The operand
stack is mapped on expression trees, while opesatbm local variables are converted
into operations on an infinite set of registersdlechvirtual registers” Figure 14shows an

example of a NetlL program being converted intsiadf MIR statements.

1Statements are roughly equivalent to sentenceatimal languages. A statement forms

a complete unit of executioa=b+c is astatementwhile b+c is anexpression
55

4. Implementing the NetVM Model

The LLIR intermediate representation is a list of assembstructions whose
operators are very close to the target machineukgey Each backend maps MIR
statements on lists of LLIR instructions and thepplees on it target-specific

transformations and optimizations.

Statements
push 12 ;offset of the ethertype field List push 2048
upload.16 ;load the ethertype field
push 2048 ;0x800 . DISCARD
jemp.neq DISCARD ;compare and jump to DISCARD if no tequal jemp-ned
push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field upload.16
push 167772161 ;10.0.0.1
jemp.neq DISCARD ;compare and jump to DISCARD if no tequal
ACCEPT:) push
pkt.send outl filter true il 167772161
Dl?tngRD: filter false Jemp.neq DISCARD

}

upload.32

ACCEPT:

kt.send outl .
présendon Expression
l Trees

DISCARD:

I

ret

Figure 14. Conversion of a NetlL program into a MR of statements

Figure 15 shows an overview of the compilation flawgarding mid-level

transformations, which will be the argument of tlst of this section.

56

4.4. The Compilation Flow

Bytecode Stack
Based
NetlL Bytecode —— Analysis lase
Do MIR ;
SSA Generation !
v
Tree
Mid-Level Rased
Optimizations (MIR)
Code Copy Undo
‘ Inlining Coalescing SSA :
v
l Target
- Specifi
Target-Specific Backend p,gu ©
(LLIR)

Figure 15. Compilation Phases

4.4.1. Mid-Level Optimizations

In order to provide a general framework for simpfify the development of dataflow
analysis and optimization algorithms, the NetVM qiler translates the MIR into a
Static Single Assignment form (SSA) [33]. The S®#nf implies that every variable is
assigned exactly once, in this way the relatiorshigtween the definition and the uses
of every variable are made explicit in the MIR, lvatt altering the semantics of the
program. The optimizing algorithms benefit fromsttiorm in terms of simplicity of
implementation.

The optimization algorithms implemented in the NétMframework have been
selected after an accurate analysis of existinglLNebde, either hand-written, or
automatically generated through a set of high-ldk@htends. In particular, the code
generated by the packet filter compiler presente[2%], exposes several redundancies
and suboptimal recurrent patterns. The implemeatgdrithms aim also at taking into
account such situations, by removing the negatifexts introduced by automatic code
generation.

Among the implemented optimization algorithms, QGans Propagation replaces

every use of constant-initialized registers with tespective values. Such optimization

57

4. Implementing the NetVM Model

removes assignment instructions where a constargpied into a register whose value
is never changed and often enables the applicatfoather optimizations, such as
Constant Folding or Dead Code Elimination. The ferwf these tries to simplify all the
operations whose operands are constant, by regléioem with the result computed at
compile-time. The latter removes instructions defjnvariables that are no longer used
later in the code (i.e. dead variables). Algebi@implification has some similarities
with constant folding, but, instead of computingcampile time the result of constant
expressions, it exploits algebraic properties othmmnatical and logic instructions to
replace sub-expressions that can be computed apileotmme with their result, for
example by substituting the expressian*(1) with (a). Reassociation is a technique
that joins different statement trees into deep&spenabling further transformations to
be applied by other algorithms like Constant Fajd¢].

The role of reassociation is evident when considgtihe structure of typical packet
demultiplexing programs. These programs usualljtatorsequences of operations for
finding the offsets of both protocol headers arids in the packet buffeFigure 1A
shows an example of such a sequence of statenoeritecfementing a variable holding
the current offset (i.e. r0), in order to pointttee beginning of the TCP header. The
increment is made in two steps, by adding the lengt the Ethernet and IP headers (14
and 20 bytes respectively). The reassociation #lgor joins the two statements
resulting in the statement on the left @fure 18, allowing further optimizations.
Indeed, constant folding can remove the second ADde, resulting in the tree on the
right. Since this kind of pattern is very frequamtassociation is very effective in terms

of performance gain.

58

4.4. The Compilation Flow

gg ----------------

‘ load r0 const 14 ‘ load r0 const 20

A

‘ add ‘ ‘constZO‘

/\ »‘Ioad r0o ‘ ‘const34 ‘ ;

‘Ioad r0 ‘ ‘const 14 ‘

B
Figure 16. The role of reassociation

All optimizations described above are performedt@nIR in SSA form, but in order
to produce executable code, this has to be revéxae#d to a normal form: this step
leaves the program in a state where most variagdesiefined only once and a large
number of copies exist in the program. This is tyeamon-optimal because such
guantity of copies is cumbersome to execute aradgelnumber of virtual register can
burden subsequent compiler modules, affecting clatign times. For these reasons we
implemented a Copy Coalescing [35] algorithm, whedans the code for copies and
tries to assign the same name to both the soutéhandestination variables involved
in the copy. This is safe if the variables involveale live ranges that do not overlap.
Beside optimizations based on dataflow analysesg, diptimizer also provides
algorithms for simplifying the structure of the ¢ai flow graph, such as Branch
Simplification, for replacing all conditional jumpisat can be evaluated at compile-time
with unconditional jumps, Jump-to-Jump Elimination bypassing and removing basic
blocks containing only a jump instruction, and Uauleable Code Elimination for

removing unreachable basic blocks [34].

59

4. Implementing the NetVM Model

Although the architecture-independent optimizatadgorithms implemented look
simple and are widely known from classical comptlegory, they have proven to be
extremely effective for two main reasong: facket-processing applications use a very
simple structure of the code, compared to genargigse ones, andi) these provide
the base for further target-specific transformaidhat can be applied by a specific
back-end, as will be detailed in 4.5. The comborabf both architecture-independent
and target-specific optimizations results in thedoiction of code that in some cases is

faster than the one generated by state-of-the-aangpilers, as Chapter 0 will show.

4.5. Compiler Backends

The NetVM compiler infrastructure provides threekmnds: one for the Intel x86
architecture, one for the Cavium Octeon networkcessor and one for the Xelerated
X11 systolic array processor. In particular, therfer two have a very similar structure,
while the latter, being targeted to a very spepiapose architecture, relies on a more
complicated sequence of compilation phases.

Every backend of the NetVM compiler translates Mi&tements into sequences of
LLIR instructions implementing them. This task iankled through a Bottom-Up
Rewriting System (BURS) [36], which executes a-megching algorithm driven by
architecture-specific rules that specify how a iporof the intermediate representation
(i.e. an expression sub-tree) should be translaiedtarget instructions. In particular,
different rules can relate to overlapping treequat, and the BURS is able to chose the
best (i.e. the less expensive) combination thaérothe most extended expression tree.
BURS can be configured to recognize very specifittguns that can be part of an
algorithm, enabling a very flexible approach in ttreation of the target code. For

instance, an algorithm made up of three pieces ABR be implemented as AB in

60

4.5. Compiler Backends

software and C in hardware on one platform, and as software and BC in hardware

on another platform.

45.1. X86 Backend

The x86 backend follows the Just-In-Time paradion:each NetPE composing a
NetVM application it generates the binary code dofunction receiving an Exchange

Buffer as an argument. The sequence of the congilgghases involved is shown in

Figure 17.

Medium level IR
Tree

Based (M I R)
IR
! BURS-based

Instruction Selection

v
X86
IR

(Infinite Switch lowering
Regs)
v Graph-coloring
X86 Register Allocation
IR
(Machine

R

egs) Binary

Code emission

v
X86
Binary
Code

Linking

Figure 17. Compilation phases for the x86 backend

The x86 backend, after having mapped MIR statememtis x86 LLIR instructions
in the BURS instruction selection phase, perforeggster allocation in order to assign a
machine register or a memory location to everyuairtregister used in the MIR
program. The register allocation algorithm impleteenperforms is based on graph
coloring [37][38], using the spill heuristic proposed [80] for minimizing spill costs

and for guaranteeing an optimal utilization of maelregisters.

61

4. Implementing the NetVM Model

45.1.1. I ntel X86 low-level optimizations

The set of BURS rules implemented in the back-emdsaat addressing two
problems:) the optimal exploitation of the complex instrocti set of the target
machine, and ii) the application of specific optimizations for gatprocessing
applications.

With respect to the first kind of optimization, ti@dSC-based Intel x86 includes
powerful and complex instructions, which allow sfied\etIL patterns to be translated
into a single x86 instruction, with the result ofntMmizing the code size. The BURS
instruction selection algorithm makes this operastraightforward. For examplegure
18 presents a fragment of x86 code that calculaee$etigth of the IP options fields with
both its naive and its optimized version. Sincs thalue is calculated by loading the IP
header field, masking it, multiplying it by four @rfinally subtracting 20, we can
compact most of the processing through the x86 L{EAad Effective Address)

instruction [40], which exploits the Memory Managam Unit of the processor.

Non optimized Optimized

movzx eax, byte ptr [ebx+14] movzx eax, byte ptr [ebx+14]

and eax, Oxf and eax, Oxf

mov esi, 4 lea ecx, dword ptrlecx+eax*4—20]
mul esi

mov esi, eax

add esi, -20

Figure 18. Exploiting the Intel x86 instruction set

On the other hand, we implemented special rulegpdimizing frequent operations
of packet-processing applications. For exampleseludten need to load a field from the
packet header, perform some calculation and compuetith a constant value. However
packets contain data organized in network byterondhich is big-endian, while x86
uses the little-endian convention. This requireagyng the data contained in the
packet buffer before starting the processing. @iut®n, instead, uses the BURS to

recognize those patterns of instructions and madwee dyte swapping operation to

62

4.5. Compiler Backends

compile time. In other words, whenever possiblestaad of generating code for
swapping the bytes of a register at runtime, thepiter swaps the constant during the
compilation, thus producing more efficient codesifple example of the use of this
technique is presented figure 19 which refers to the control that determines if an

Ethernet header is followed by an IP header.

Non optimized Optimized

mov eax, word ptr [12] cmp word ptr [12], 0x8
shr eax, 0x10

bswap eax

cmp eax, 0x800

Figure 19. Constant byte order swapping optimizatio

Another common operation in packet-processing agptins is represented by the
multi-way branch, modelled after the switch-casastauct of the C language. The
back-end includes a switch lowering module thdbfes an approach similar to the one
implemented in the LLVM compiler [41], which is &blo select the best mapping
algorithm, according to the cardinality and thesignof the case set.

Finally, the x86 back-end includes a specific phtsd implements an efficient
linking strategy for code associated to differeetEs: direct linking avoids returning
the control to the framework when a NetPE task ghdsce reducing the overhead

introduced by the runtime environment.

4.5.2. Octeon Back-end

Before describing the backend for the Cavium Octeetwork processor, a short
description of the characteristics of the targehaecture is presented, and more details

on it are reported in Appendi.2.

63

4. Implementing the NetVM Model

452.1. The Octeon architecture

Optional ZaBbit
e e T
—1
SR a2 —r Hyper Access Low Latency
of e—— ; Mamary Controllor
4 RGN ntorface
Secure || [Packes |
Vault
W Sl | securtty |
GPIO | NNl

2K Wwrite Buffer 2K Wiite Bulfer
.

643-bit,
s, [

P42
of #———
4x RGMI

]
e s P,

Figure 20. Internal Architecture of the Cavium QutdNetwork Processdr

Like most NPs, the Cavium Octeon tries to explog parallelism of typical packet-
processing applications: for this reason it featwp to 16 MIPS-64 cores at 600 MHz.
Each core has a private L1 cache, while the L2eacid DRAM are shared. Although
the L2 cache and DRAM are physically shared, thesgannot communicate through
the memory because of their private virtual mengpgce. Communication primitives
between cores are provided by specific hardwareharesms. The primary on-chip
communication mechanism is the work, which is atityenreated upon the arrival of a
packet and queued into a specific hardware uretPiacket Order Work (POW). Works
have many attributes that determine how the POVWedwdbs them to the cores. For

example the programmer can specify different Qoflée associated with different

2 Copyright © 2000 - 2008 Cavium Networks. All right reserved
(http://www.caviumnetworks.com/OCTEON-Plus_ CN58Xixl)

64

4.5. Compiler Backends

kinds of traffic, since the unit receiving incomipgckets can parse the packet header,
providing a preliminary classification. The mostpantant attribute is the group: in fact
cores subscribe to groups and the POW scheduldssworthe cores according to the
subscribed groups. When a core terminates itsijadgan submit the work to another
group, i.e. to another core, or send the packetoatnetwork interface.

Besides the MIPS cores, the chip also containsastipg units and coprocessors for
offloading some specific tasks. In particular, sooh¢hese deal with the reception and
the transmission of packets, others are devoteédetananagement of pools of memory
buffers, while coprocessors implement cryptographamd string matching

functionalities in hardware.

45.2.2. The compiler back-end for the Cavium Octeon

When generating code for the Cavium Octeon, th&/Metompiler uses an Ahead-
Of-Time model and the output of the compilation qass is represented by several
assembly files, C listings and configuration fitbat must be further processed by the
Octeon SDK, using the well known GCC compiler tbalic. The result is a native
application running on the NP hardware with a malimuntime environment, as the
processor units are exploited to implement natitieé/NetVM model. In fact, as figure
Figure 21 shows, the code generation process igliffetent from the x86 back-end
(i.e. it implements the BURS instruction selectaond global register allocation), while
the mapping of native hardware functionalities des® some more discussion and
represents the most valuable part of this workti®darly, this includes the mapping of
the Exchange Buffer (i.e., the memory that contdires packet) on native hardware

structures, and the mapping of the string matchogyocessor of the NetVM model.

65

4. Implementing the NetVM Model

Tree

Medium level IR

Based (MIR)
IR
' BURS-based
Instruction Selection
v
MIPS
IR
(Infinite Switch lowering
Regs)
v Graph-coloring
MIPS Register Allocation
IR
(Machine
Re:gs) Assembly
Code emission
v
MIPS
Assembly Further Compilation and
Code Linking (Octeon SDK)

Figure 21. Compilation phases for the Cavium Octeackend

With respect to the former, the Exchange Buffer ¢@n mapped on the work
structure of the POW unit. This enables NetPEsetdibtributed on different cores that
communicate through the native mechanism, in a thalis completely transparent to
the programmer. Currently, our prototype exploittycone core, hence it implements
dynamic NetPE linking as in the x86 back-end andlats the POW unit only for
receiving and transmitting packets from the extemvarld. However the general
mechanism is already in place and can be usedtastang point for future work aiming
at fully exploiting the potentialities of multi-cemprocessing.

With respect to the second item, the NetVM modea hageneral string matching
coprocessor that enables searching for groups tierpa in the packet payload.
Patterns, which must be initialized before startimg program, are divided into groups
identified with an integer ID, so that the copram@scan search all the patterns
belonging to a group at once and return multipléciiag results to the caller. While
the x86 back-end provides a software implementatbased on the Aho-Corasik

algorithm [42], the Octeon includes a hardware thmt is able to traverse graph-based

66

4.5. Compiler Backends

structures representing Deterministic Finite Auttan@FA) in memory, which can be
used to perform both string and regular expressiatching. With respect to the Octeon
processor, the DFA graph must be translated intonary image, which has to be
loaded in a special external memory, the Low Lageiemory (LLM). During
execution, the cores can submit a command to thi &fgine specifying the address of
the packet payload and the address of the grafffeihow Latency memory to be used.
The hardware unit automatically loads data from paeket memory and uses it to
traverse the graph in the LLM, while searchingdanatch.

Finally, the runtime environment for this back-esdvery simple and it consists of
an initialization routine (automatically emitted lilge compiler) that initializes the
processor units and instantiates the memory streicteeded by the NetVM instance.
The only task of the runtime environment is themetceive packets from interfaces and

to pass them to the NetVM.

4.5.3. X11 Backend

45.3.1. The X11 Network Processor

The Xelerator X11 network processor is based onysiokc array (actually a
pipeline) with a synchronous dataflow architectundhich shares the concept of a
systolic pipeline with its predecessor X10q [48hure 22 shows an overview on its
internal architecture.

The processing elements are either VLIW processalled Packet Instruction Set
Computers (PISCs) or 1/O processors called Engieeess Points (EAPS). As shown in
Figure 28 PISCs are arranged in blocks while EAPs are glatdixed points between
PISC blocks. EAPs essentially dispatch the computdd special purpose devices that
can be used to offload part of the computationtb&f PISC pipeline. Such devices

include TCAMs, counters, hardware for computinghhealues, external SRAM, etc.

67

4. Implementing the NetVM Model

When a packet enters the pipeline, it is firstiparted into fixed size fragments.
Thereafter, the pipeline processes the packet ®atgnusing iterations of (1) PISC
processing interrupted by (2) actions and look-anghiestrated by EAPs. As a fragment
traverses the pipeline, it carries an individua@xion context containing the fragment
itself, a register file, status registers, and othé&ormation that constitute the complete
state of a progranrigure 2b shows the details of a PISC block. It is impadrten
understand that one PISC acts on one packet fragineng exactly one cycle. During
this cycle, the PISC can perform a set of paratistructions on the fragment, before

passing it on to the next element in the pipeline.

Optional TCAM Optional RLDRAM, FCRAM, SRAM or LA co-processor

$ $

Look Aside....... | Look Aside
Englne Engine

DATA FLOW

Packet Buffer Packet Buffer Packet Buffer
Execution Context|Execution Conte Execution Conte

Look Aside
Englne

NSE
Englne

-
-

RX
—IMAC
iy 178 PISC |& PISC || PISC PISC o - Q
BLOCK BLOCK BLOCK | BLOCK (@] [& I | [8)
9 @ o
: o o o
RX
_>MAC Programmable Pipeline
‘ Hash ‘ Meter Counter ‘ TCAM PISC BLOCK
Engine Engine Engine Engine
a) X11 Architecture b) PISC Block Detall

Figure 22. X11 Internal Architecture Overview

The parallelism of the pipeline is hardwired in thechitecture itself. From one
perspective, this makes the software handling atooency easy, since the execution
contexts and PISCs are effectively isolated fromheather. No explicit mechanisms
such as threads or mutexes need to be adoptedotecpraccesses to these local
resources. It is also easy to access external nesowas long as this is made in a
constrained fashion, primarily limited by the loog- bandwidth towards external
engines.

However, generic update of shared state is diffimutealize due to pipeline hazards,

including Read-After-Write, Write-After-Write, et¢44]. The reason is that the non-

68

4.5. Compiler Backends

stalling nature of the synchronous pipeline makempossible for a program to wait
indefinitely for an asynchronous mutex. However,tfee X11, a mutex mechanism can
be achieved by looping or by controlling the traicheduling into the systolic pipeline.
If no hardware-provided mechanisms exists, all ssbared accesses need to be
scheduled in advance when configuring the pipelioe a specific application.
Fortunately, the X11 architecture offers some mefamsproviding more elaborate
accesses to shared resources. This includes sufgrogtomic read-and-increment
operations both on the on-circuit counters engseell as external RAM locations.

From the compiler perspective, a X11 packet proga@msists of a number of
instruction sequences that are laid out in therusibn memory of the pipeline. This
memory is actually a two-dimensional matrix withwsoand columns where the control
flows unidirectionally and synchronously betweernuomns, and branching occurs
between rows. Because of the unidirectional exenulow, loops are not possible by
definition; branches, however, are allowed. Theoldayof code in the instruction
memory can be seen as a two-dimensional optimizgbi@blem, where a vertical
column constitutes the instruction space of a sirRJISC, and the horizontal rows are
instruction sequences. The execution context casitairow instruction pointer so that
PISCs know which instruction to execute. Branchingdifies the row instruction
pointer but does not affect the horizontal flowtlod program.

The drawbacks to this programming model are tieitstadvantages. First, looping is
not allowed: programs requiring loops need to b®lded to some limit that fits the
pipeline. The X11 also provides a loopback patletgackets re-enter the pipeline if
the program is longer than the number of pipeliages allows. The number of pipeline
passesk, is statically configured at link-time and is lit@d since the throughput is
proportional to k™. The operating frequency of the X11 systolic gipel is

dimensioned to allow a specific number of loops levhstill providing wire-speed.

69

4. Implementing the NetVM Model

Moreover, in order to avoid reordering, all packetsming from the same input
interface always undergo the same number of pipghasses, even if the processing
could terminate earlier for some of them.

Second, there are few methods to share state betpaekets. In particular, it is
difficult for information from one packet to inflaee the processing of another. This
includes programs that adapt to traffic conterafitr, e.g., stateful packet filters. To
provide for shared state between packets, one sarthe support from the existing
counter engine or implement some other, more etabanechanisms in the general-
purpose look-aside engines. It is also possibleoramunicate with the control plane,
which in turn can re-program the pipeline by attgrihe state of look-up tables, but this
approach has the obvious drawbacks of being limitedandwidth and also may

introduce race-conditions.

45.3.2. A Back-end for the X11 NPU

The architecture of the X11 backend is shown iufFag3.

The back-end translates the tree-based intermegiptesentation generated by the
upper layers of the compiler into the LLIR, whileapping the accesses to virtual
coprocessors on instructions that make use of pleeia purpose hardware features
(e.g. TCAMSs) available on the target architectdil@s task is performed by the Bottom
Up Rewriting System instruction selection phase.

In contrast to traditional processors, the X11 Nétdthpletely lacks the concept of
function call; therefore a NetVM application compdsof multiple NetPEs must be
transformed into a single compilation unit to bellaut as a linear code sequence
throughout the PISC pipeline. The X11 back-end dm@ddresses this problem by
performing an inlining step in the compilation pess, where the code belonging to

different NetPEs is linked together by replacingerrmodule calls with jump

70

4.5. Compiler Backends

instructions. This inlining operation is possibi@yif the NetPE interconnection graph
is acyclic, however this property is intrinsicaigsured by the NetVM model.
Afterwards, the intermediate representation is hiert optimized by removing
redundant instructions that might have been geeérdtiring the instruction selection
phase, then the resulting code is examined to detdependent instructions that are
suitable to be merged in VLIW blocks. At the end tbé compilation process, a
resulting assembly file is created which can belwsean input for the X11 SDK tools

that create the proper binary files for loading ardcution.

‘ Tree-based Mid-Level EJ

S L

Coprocessors
Mapping

BUR
Instruction
Selection

J L

‘ Linear Low-Level IR 7J
g1

NetPE Modules Inlining

Low Level Optimizationg
VLIW Instruction
Merging
S L

X11 Assembler &
Configuration Files

Figure 23. Architecture of the X11 backend

4.5.3.3. The Mapping Process

Compiling a packet processing program for the X1PUNdoes not differ
significantly from compiling it for any other kindf processor, as long as only the
generation of sequences of target instructions finagh level constructs is considered.
However, some constraints that are specific toofigsarchitectures, along with some

characteristics of the X11 processor, suggest thepteon of specific compilation

71

4. Implementing the NetVM Model

techniques in order to best exploit the availatdedivare resources and to improve the
chance of a program to be correctly and efficientgnpiled.

This section explores the major problems relatetthéoefficient mapping of NetVM
applications on the X11 architecture and presdmesmiost innovative aspects of the

NetVM compiler infrastructure.

Handling Loops

Since backward pointing branch instructions aréifliten, systolic array processors
are characterized by an "upstream to downstreamtwgion model, where the control
flow is driven by data flowing through the pipeliand cannot be redirected to a
previous stage. This translates to the impossibit mapping generic loops on a
systolic array, unless their maximum number ofaitiens is bounded and known at
compile time, so that they can be completely uetblnd laid out as a linear sequence
of instructions. However, even in this case sonaetiral problems arise: the theoretical
upper bound on the number of iterations may beasgel that the resulting overall
instruction count could exceed the number of ab&lastages even when using the
loopback path as described in Section 4.5.3.1.

If such considerations apparently pose a strongdtian on the kinds of applications
that can be successfully and efficiently mappea @nsystolic array network processor,
it should be noted that uncontrolled loops are fnetuent in standard forwarding
programs (either L2 or L3) with the exception ofm@protocols (e.g., MPLS stacking
or IPv6 extension headers [25]). In such caseptbielem can be overcome by limiting
the maximum number of loop iterations in the soyoegram to a fixed value. Such
considerations point out that the theoretical lamdn of systolic arrays in handling

loops may not be so relevant in practice.

72

4.5. Compiler Backends

Keeping the State of the Application

The NetVM model uses different memories to keepdtate of an application. In
particular, state information local to a NetPE tered in the NetPE local register file
and local data memory, the former keeping tempovahlyes while the latter is used for
static values as well as complex structures. Vesa, the state that is local to a packet
is stored in the packet buffer and a special buéfdied the "info memory", i.e. a
memory segment that allows subsequent NetPEs tancoincate between them.

On the X11 side, the execution context is represkebly the packet memory and a
register file, while persistent state must be kepmxternally attached memories that are
accessed through the EAPs. As a matter of facketlhappens to be a significant
parallelism between the NetVM model and the X11cpssor when it comes to data
associated with a packet. In particular, the X1dékpamemory and register file allow
indirect addressing and can be used to map the Migtscket buffer and the info
memory. Besides, a portion of the register file barallocated for keeping intermediate
results as they are computed in the NetPEs, asawddical register values.

On the other hand, the two platforms differ in W&y permanent data (i.e. the state
that survives across different packets) is treadasddetailed in Section 4.5.3.1, there are
constraints on how multiple, concurrent accesseldsame external memory location
can be made. Section 4.5.3.3 reports how in veegip cases the compiler is able to

handle this problem while still ensuring the saielate of shared memory locations.

Mapping NetVM Coprocessors

The NetVM model allows complex operations and figralities to be represented
as invocations to virtual coprocessors. The baak+maps them on the corresponding
hardware features (if available on the physicali@®gvin order to maximize the

efficiency of the resulting code. In particular, dme X11 processor this usually

73

4. Implementing the NetVM Model

translates to generating instructions that sendranedive data to/from the EAPs and
declaring which engine operation should be perfakme

A look-up coprocessor that allows the programmeadsociate 32-bit keys to 32-bit
values was considered as a proof of concept. OX1liethe requested operation can be
performed by the integrated TCAM module. Since Hane hardware unit must
possibly be shared with other instances of the saopeocessor (in a different NetPE)
or contain other unrelated content, the compil@vigles a thin hardware abstraction
layer to split the TCAM into multiple tables. Thesachieved by dedicating a portion of
the look-up key space to hold a table number.

NetVM coprocessors wrap a well-defined interfaceuad a usually complex
algorithm; the compiler has the twofold task ofnsiting the algorithm itself and
adapting the interface to the actual hardware wmployed. While the latter task is
achieved by the compiler, the former might proveassible due to possible limitations
of the hardware platform. In particular, if thegar architecture does not provide the
specific functionalities exposed by a virtual camssor, a software emulation must be
performed. However, this might not always be pdssiue to restricted amount of

primitives provided by the hardware and limitatiamgposed on the instruction count.

Exploiting the Features of the Hardware Architecture

The previous section explored the problem of mappirvirtual coprocessor (i.e., a
specialized macro-functionality) defined by the Xt model on real hardware. This
section presents the dual problem, i.e., mappimgmge NetlL code to some specialized
modules provided by the hardware.

Apart from the case where the source language esplogh level constructs that
find a natural mapping on specific hardware fundidies, the problem is in general
extremely complex: hardware modules usually impl@no®mplex algorithms that, in

order to be efficiently translated, must first beagnized in the source program.

74

4.5. Compiler Backends

The switch-case provides a simple example of amyeescognizable high-level
construct. The instruction count of a traditiomaplementation based on a linear search
might grow in complexity with the number of possildlestinations, potentially using an
extensive portion of the pipeline. However, on XEl the same behaviour can be
obtained by performing an associative look-up tegs the on-board TCAM, costing
effectively one pipeline stage only, independenfilgm the number of possible
alternatives.

An unintended consequence of extensively using rtiapping technique might be
the over-subscription of limited hardware resourdegarticular, there are limitations
in look-up bandwidth and also the fact the EAPs @esent at specific stages in the
pipeline. In this case the compiler should emitectitht uses other pipeline resources
such as the PISC processors or different extemigs.uAlthough deciding when to do
this is a complex optimization problem, the comptlées to solve it through a simple
heuristic that works well in the average case.

Making the specialized functionalities provided thg X11 hardware automatically
available to the program requires in the generakaaore effort than mapping the
switch-case construct. A good example derives fithi problems related to the
concurrent update of shared information mentiomegrevious paragraphs. If the state
to be updated is an integral value, the compiler make good use of the X11 support
for atomic increment instructions, thus becomintgdb overcome concurrency issues
in a limited set of cases. A common example is kappounters in external memory,
e.g. for statistical purposes.

A counter increment operation in itself is not atoes it is necessary to fetch the old
value, increase it and store the newly computeditres the same offset. However if
this procedure is not performed atomically by thediware it becomes possible for two

consecutive packets to read the same value fromamenmvith the net effect of

75

4. Implementing the NetVM Model

incrementing the counter once instead of twice.oVercome this issue the compiler
uses the BURS-based instruction selector whichles t recognize if specific locations
of the data-memory are accessed through this patfesperations, and to map them on
the special purpose atomic increment instructionsiged by the hardware.

Depending on how the source code is written, it lsappen that a pattern ends up
split across different statements. Since the BURSaies on a single IR expression tree
at a time, in this case the recognition mechanismsdhot work. No control on the
source code form can be assumed, so this issuedwesililt in low reliability of the
compilation process if left unchecked. Vast improeats can be made by processing
the intermediate representation with appropriatéinopation algorithms, such as
algebraic reassociation. These algorithms can aeger subtrees in the IR so that the
semantic meaning of the program is preserved, batiging the instruction selector
with deeper trees that are more likely to cont@oognizable patterns. This way the
BURS can operate successfully even if the relatstiuctions were originally scattered
across a region of the source listing.

In any case, it must be pointed out that even thaugh techniques work well in
very specific cases, their general validity stidleds to be proven, since they are tuned
on patterns of instructions and not on algorithinsparticular, even for the simple
example of counters, the programmer could updaspexific memory location in
several exotic ways, preventing the BURS to recogjttie sequence of instructions as a
predefined pattern. We believe that in order tolaep general algorithm recognition

technique, more specialized analyses of the cooeldibe performed.

VLIW Instruction Merging
Being VLIW processors, PISCs allow up to four ineegent operations to be
executed at the same time, in order to exploitulesion-level parallelism. These can be

(1) an ALU operation, (2) a move for copying woafsup to 32 bits between different

76

4.5. Compiler Backends

locations of the register file and the packet mgm@8) a load offset operation for
indirectly accessing the register file or packdagdand (4) a branch.

When generating assembly code, the compiler shargdto merge multiple
instructions in single VLIW words, taking care appriately of data and control
dependencies. Several algorithms are describatkrature for handling such task in an
optimal way, e.g., trace scheduling [45]. The cderpcurrently implements a simple
algorithm that works only on straight-line codegimzents (i.e., basic blocks) and does
not perform any instruction reordering before meggiThis provides good results, even
though it is a widely known result that the amowtinstruction-level parallelism
present in a program is limited when considerindy dmsic blocks, even more if
instructions are never reordered. It is likely thedplementing a more aggressive

strategy would improve the emitted code qualitysigantly.

Automatic Computation of Data Size

While the NetVM model allows to fetch and store a@aya size< 32 bits), registers
are 32-bit words. This is a problem for the X11gassor that works natively on 16-bit
words because of the larger overhead requiredrforpe 32-bit operations, while often
these can be correctly carried out using only 86obits.

Although this is clearly a limitation of the NetVihodel that does not explicitly
support different data sizes, we decided to imphgra@ heuristic algorithm in the X11
back-end that tries to assign to each NetVM registe optimal, minimum size while
preserving the program semantics. In the long ténis,issue points out the necessity of
a revision of the NetVM model that will involve tlaeldition of new NetlL opcodes to

provide the NetVM with hints about the appropridéta size.

77

4. Implementing the NetVM Model

4.6. Conclusion

This Chapter presented the design and implementafi@n optimizing multi-target
compiler and run-time system for the NetVM model, arder to demonstrate its
capability to enable the portability of packet pssing applications, while ensuring an
efficient mapping on a wide range of heterogendarget platforms. In particular, the
compiler allows the translation of NetlL progrants native code of three different
architectures, exploiting the hardware featureslavia on real network processors.

Even if the problem of partitioning applicationg@ss multiple symmetric execution
cores (e.g. like those of the Cavium Octeon netwwdcessor) has not been taken into
account, experimental results reported in Chaptshdiv that the generated code has
performances often better than those obtained fnamd-written programs compiled

with state-of-the-art general-purpose compilers.

78

5. Assessing the programmability of
the NetVM

5.1. Introduction

In order to assess the capability of NetVM to be edfective platform for the
development of real-world applications, a clonetlo¢ popular Network Intrusion
Detection Sensér(NIDS) Snort [46] has been designed and implenterite the
NetVM. The choice of this type of application isedto its requirements in terms of
intensive packet-processing capabilities, dealirty @all protocol layers and performing

deep packet inspection. In addition, IDSs are blétéor hardware acceleration because

3 A Network Intrusion Detection Sensor (NIDS), bijefDS, is a network monitoring tool
designed to detect unwanted attempts at accessagpulating and/or disabling computer systems
on a network

79

5. Assessing the programmability of the NetVM

of their extensive use of regular expressions an#up tables, which are often assisted
by specialized coprocessors on physical platforms.

In this Chapter, the architecture of the applicai® presented, showing that NetVM
provides a programming model that is general endaglsupporting the development
of very complex packet processing applications ttet be seamlessly ported onto
extremely different platforms. Indeed, experimemésults reported in Chapter 0 show
that the Snort clone for the NetVM can be execusethout any change on two
heterogeneous target architectures (namely théxX86and the Cavium Octeon), with
performances that are comparable with those of dhginal application running

natively.

5.2. Related Work

The implementation of a complete Snort-like intamstetection sensor on a network
processor was first explored by [47] that presantempiler for generating C code from
a set of intrusion signatures to be executed oimgah IXP1200 NPU. The choice of
generating C code was dictated by the need of éxmgothe available development
toolchain. However, this solution requires recoingilthe software offline (where
compilers are available), and then the updated ongs be downloaded to the physical
platform. This solution is efficient in case of dbte” software, but it prevents the
possibility to have live updates for the softwaeeg(updated security rules). Our
solution is also based on a compiler for transtptirrule-database into executable code,
but the generated program is represented througihstract assembly language that has
to be further translated into the target binaryecbg the NetVM JIT compiler.

Since network intrusion detection heavily relies deep packet inspection
functionalities, such as string and regular expoessnatching, great effort has been

directed towards solutions for optimizing and ddiiing such processor intensive tasks

80

5.3. The Snort Intrusion Detection Sensor

through efficient algorithms and specialized hanmdwanodules or coprocessors
[48][49][50][51][52][53]. Another approach is usirgptimized algorithms targeted over
the physical hardware platform; for example, [54dposes a modified version of the
Aho-Corasick [42] string-matching algorithm thahdae executed in parallel on several
microengines of the Intel IXP1200 network processor

Differently from other research projects, the preguob approach aims at validating
the entire application instead of speeding up $igeftinctions such as only string and

regex matching.

5.3. The Snort Intrusion Detection Sensor

Snort [46] is the implementation of a passive nekwlDS that is the de-facto
reference in this class of applications; hencedénsed an obvious choice to design our
own IDS by keeping compatibility with its rules aaterting formats. In this way our
IDS would get immediate benefit from the huge das&bof already-existing attack
signatures, which would also offer an excellentingsenvironment.

Snort is currently capable of performing real-titredfic analysis and packet logging
on IP networks. Its capabilities include protocollysis and content searching, which
can be used to detect a variety of attacks andegrauch as buffer overflows, stealth
port scans, CGIl attacks, SMB probes, OS fingerpgnattempts and many other
security threats.

Snort uses a database of rules to describe therkattacks. Each rule is written on a
single line of ASCII text through a flexible degairon language and is divided into two
logical sections: the header and the options. Tte header contains an action, a
protocol, source and destination IP addresses atmdasks, and source and destination

transport-protocol level ports. The rule optionst® contains a series of keywords,

81

5. Assessing the programmability of the NetVM

which can be used to specify additional testsshauld be performed on a packet, such
as searching for a particular string or a regukgression in the payload, or checking if
the “code” field of an ICMP packet matches a pattic value. If all the tests specified

in a rule are verified, then the correspondingaarcts undertaken (e.g. sending an alert

an/ord logging the packet). For example, the foilg rule:

log tcp any any -> 10.1.1.0/24 80 (content: "GET"; msg: "HTTP
GET")

logs every packet coming from any host and diretbedort 80 of any machine of
the 10.1.1.0/24 network containing the ‘GET’ striggich packets will be logged with a
message saying “HTTP GET".

The architecture of Snort is highly modular: it lumbes a Decoder module, which
aims at locating protocol offsets and field valieset of preprocessors that are used to
normalize the packet when needed (e.g. an SSL plecryn order to allow the
following code to perform tests on the content,IRrdefragmenter module, etc.), and
the detection engine, which is the core of the iappbn, where incoming packets are
matched against the rule database in search adsaljp® security threat.

The detection engine will use several strategiesdducing the amount of checks
that must be performed on the packets. For exarrples 24shows an optimization of
the content matching module based on the TCP ddistmport contained in the rules.
In this example, content matching tests are growgmerding to the TCP destination
port contained in the packet, i.e. if the tcp.ddt® equal to 80, only the first, second
and fourth rules (hence keywords “POST”, “HEAD” aftsET”) need to be tested by
the content module. In case this control matchesse rules are set as “potentially
matching”, and the processing continues with furiteps that aim at checking all the

field rules. However, it is evident how this stigig(which in fact is more elaborated

82

5.4. Architecture of the NetVM IDS Sensor

than in this example) can reduce the amount ofkshétat needs to be performed on

every packet. Besides, using similar techniquekgsrean
packet-specific properties, like the source andtiokson
packets, creating even smaller subsets.

More details on the Snort IDS can be found in [46].

Rules Example

log tcp any any -> 10.1.1.0/24 80 (contg PST"; msg: "

log tcp any any -
log tcp any any -

log tcp any any -

Figure 24. Rules optimization in Snort.

EAD"; msg:
)RT"; msg:

ET"; msg:

also be grouped by other

ports for TCP and UDP

HTTP POST")

"HTTP HEAD";)
“FTP PORT")

"HTTP GET")

5.4. Architecture of the NetVM IDS Sensor

The IDS sensor for the NetVM is not a direct pdrtSmort; the two applications

share almost no lines of code. Among the reasanghfe choice are the lack of a C

compiler for the NetVM and, more important, theiékethat the C language is not

always the best choice for highly packet-orienteatpssing applications. Our solution

is based on a custom compiler that takes Snors and creates NetVM assembly. Even

Ithough the inputs and outputs of the applicatiom the same as those of Snort (for

instance,Table 2 shows the list of Snort keywords supported in iM% sensor), its

83

5. Assessing the programmability of the NetVM

internal architecture had to be redesigned froratshrin order to take full advantage of
the NetVM paradigm, which tries to exploit the infic modularization seen in packet-
processing applications that are usually made wgeeéral short and independent tasks.
As the Snort rule format basically specifies tetat might involve the different
protocols present in a packet, we decided to créidterent modules, instantiated on
different NetPEs. Tests on each protocol are pexddrin the NetPE responsible for it,
with the exception of some special functions (sashpacket analysis and pattern
matching) that are not associated to a single pobtand that are allocated to specific
NetPEs. For instance, a rule such lag ‘tcp any any -> 10.1.1.0/24 80 ”
will involve generation of code in different modsiethe IP one will check that the
destination address matches; the TCP module wilhb@ved for checking the value of

the TCP destination port, and so on. The rule nvdtch only if all the tests are verified.

The final architecture is shown miyure 25
Table 2. Snort Keywords Supported by the NetVM IBshsor

Keyword Description

msg Message to use when logging

sid Unique rule identifier used to keep track ofeleped rules

rev Rule revision, used by Sourcefire

classtype Type of attack the rule detects

reference References to well-known application @xpkhe rule detects

itype Search for a particular ICMP Type

icode Search for a particular ICMP Code

icmp_id Search for a particular ICMP ID

icmp_seq Search for a particular ICMP Sequence eumb

dsize Payload length

content Search for a string in the packet payload

depth Limit string search to a certain number déby

offset Skip a certain number of bytes before steegrch

within Limit string search to a certain number gfds after a preceding string match
distance Skip a certain number of bytes when seagdfter a preceding string match
nocase Match a string case-insensitively

flow Match a specific state/direction of a TCP ceation

pcre Search for a regular expression in the pgukgbad

The NetPE abstraction offers the possibility of extellent modularization: each
module is almost independent, and performance caninbremented by simply

improving the code generation for NetPEs that gmethe bottleneck, implementing

84

5.4. Architecture of the NetVM IDS Sensor

ad-hoc strategies to minimize the number of testbd performed on a packet. For
instance, some rarely used modules (e.g. ICMP soforta few rules in the entire
ruleset) use a very simple algorithm (linear segrathile others implement smarter
strategies. Global optimizations can also be impleted in the NetVM framework to
be able to reduce the size of the target code.

This does not prevent global optimizations impletadnn the NetVM framework to

be able to reduce the size of the target code.

Lookup
coprocessor

i
'

Conn.
> Status
Matching

Conn.

IPva "l Tracking

TCP

String-matching

coprocessor /‘
acket Protocc'JI_' Contept r Ethernet UDP Pay'load $
analysis | | Matching Options

RegEx-matchin \

coprocessor

—

IPv6 ICMP

Figure 25. Architecture of the NetVM IDS sensor

As told in Chapter 2, NetPEs communicate among $lebres through “exchange
buffers”, i.e. meta-packets that, besides the pdokffer, contain additional data (e.g.
time stamps) and a dedicated area called “infatmart where NetPEs can store state
information that flows through the NetVM followirthe same path of the packet. Each
module composing the IDS exploits the “info paotiti for keeping the matching state
of every rule and for communicating it to subsequeadules. In particular, agure 26
shows, the info partition is divided in two partee former contains a bit-vector, in
which every bit represents a rule, while the lageurther organised into several 32-bit
slots, each one containing data extracted frompteket, such as source IP address,

port, etc.. When a packet enters the applicatios bit vector is initialized to zero (i.e.,

85

5. Assessing the programmability of the NetVM

no match) and the content matching module seldwsgroup(s) of rules that are
suitable for further processing by checking theppropatterns and by turning the
corresponding bits to one. Then, the following medwshould refine these controls by
checking that all the conditions of each rule aegfied. As soon as one condition does
not match, the corresponding bit in the rules lotoeis reset; at the end, only the rules

that have this bit set are matched.

— A
Q
4
=}
©
-]
s R1| R2| R3| R4| R5
35 Bitvector containing rules results
<
o
o Offsets of protocol/fields
c
- IP src | IP dst
A

Figure 26. Exchange buffer: packet data and inftitfzm

5.4.1. Packet-processing wor kflow

In our architecture, the processing of a new pastats with the Protocol Analysis
module that extracts information on the protocohdess that are contained into the
packet and records the starting offset of the @ad/lgf any). This piece of information
is stored inside the “info partition” of the exclgenbuffer and is therefore made
available to all the following modules in the chairhe next module is dedicated to
Content Matching, which does some cross-layer chackrder to reduce the amount of
strings to be tested on each packet and that nstbleepayload against a set of static
patterns and regular expressions specified indhece rules. Since this task is the most
processor-intensive, it relies on string and regebgression matching coprocessors
provided by the NetVM architecture, which on geh@apose platforms are emulated
by software. The location of this module, almostront of the processing chain, is due
to performance reasons. In fact, the search isecaaut by a modified version of the
well-known Aho-Corasick algorithm [42] that allowsveral patterns to be searched at

86

5.4. Architecture of the NetVM IDS Sensor

the same time. As a result, if a pattern is foumglde the payload, only the subset of
rules based on it needs to be extensively verified.

Further modules will refine the processing by perimg only the tests that are
required on the subset of rules that have beerttsdleas “possibly matching” in the
previous modules. For instance, the IP, TCP and WidBules group together all the
rules that have the same addresses/ports, schthabhly have to check each different
combination of IP and netmask once. Another op@tnin consists in testing the
destination address/port first, and then, if it chas, the source address/port. This
approach is justified by the fact that, in realergkts, most rules have an unspecified
(i.e.: “any”, in Snort terms) source address angrecise IP as destination address,
which stems from the fact that attacks come froywdrere, while the addresses of the
servers in the internal network are well-known. tiresif the packet contains a precise
destination address allows discarding a large narabpackets immediately, reducing
the ones that need to be further processed in twdistect a match.

The Ethernet module only checks if the packet anatdPv4 or IPv6, and sends it to
the proper module, or just discards it in case tie¢work-layer protocol is not
supported. This module is extremely simple and dussprovide any rule matching
functionalities, since Snort rules do not suppaitieink layer tests (e.g., MAC-address
based filtering).

The IPv4/IPv6 modules implement the tests over sowand destination network
addresses, while the TCP and UDP modules take afamhecking the source and
destination TCP/UDP ports of the packet, and thelPCone checks all the possible
ICMP options, which involve tests on the ICMP typede, ID and sequence number.

The Connection Tracking and Connection Status Madgcmodules perform stateful
TCP connection tracking, distinguishing who ingiétthe connection (i.e., server vs.

client), the direction a packet is travelling ine(j from server to client or vice-versa)

87

5. Assessing the programmability of the NetVM

and the state of the connection (i.e., establigirestill in the handshake phase). This
task is performed with the aid of a lookup coprgoesthat acts as an associative
memory holding information on the current stateactive TCP connections. Finally, the
Payload module handles the matching of non-comagload-related options, such as
tests on the payload size.

Connections among the various PEs are organizéths@ach incoming packet only
traverses the subset of PEs dealing with the potdat contains. This could be easily
achieved through a scheme modelled after the TCpvdfocol stack, as shown in
Figure 4. This architecture has many advantagest, l[each protocol is analysed only
once. Second, the knowledge of a protocol is emdxbdial a single place, making the
debugging easier and improving the handling ofaqmol. Furthermore, the addition of
a new protocol simply requires a new NetPE to lmeried in the chain (and the
compiler to be updated to generate the new codéhéoNetPE). Third, the number of
traversed NetPEs is small, i.e. packets traversg MatPEs responsible of protocols
that are present in the packet (i.e. an UDP paekenhot traverse the NetPE dedicated
to TCP), with a clear advantage from the perfornearviewpoint. Fourth, the
architecture is suitable for pipelining. At the mamh the application handles one
packet at a time, but potentially it could handl®ren packets if NetPEs can be
instantiated on different physical execution uii@sgy. in case of the Octeon multicore

chip).

5.4.2. The code generation process

The traditional approach in intrusion detection leapions is usually based on
iterating over the rules that are represented imamg as complex data structures. For
our IDS we decided to follow a different approach the problem. In our
implementation, rule checks are directly embeddetthé code. In particular, instead of

producing static programs that iterate over datzcgires in memory, the code directly

88

5.5. Conclusion

implements all the checks needed for matching gackgainst specific portions of the
rules. Such a choice is based on the considerdfianrules data remains constant
throughout the execution of the program and sufdrnmation can be exploited in order
to emit checks (i.e. branch instructions) basedcomstant values (instead of checks
based on values loaded from memory), producing refireient code and opening the
way to further optimizations. Since the resultinggram is almost totally created at

run-time, the entire code must be regeneratedsa same rules change.

5.5. Conclusion

In this Chapter the implementation of a networkusion detection sensor for the
NetVM platform has been presented, in order to detrate that the NetVM
programming model is suitable for creating compdexket-processing applications.

The current status of the IDS sensor is not as mads the original Snort. For
instance, some features (such as the IP defragmente TCP flow reassembly) are
missing, and some application-layer keywords inrille language are not supported.
However, the objective was not to create a perdkmte of Snort, but to implement a
reasonable proof-of-concept application for demmatisty the validity of the NetVM
model. From this point of view, results are intéreg since NetVM primitives (i.e. the
NetIL instruction set and the abstraction providedvirtual coprocessors) allow to
effectively handle packet processing at all netwagKayers. Moreover, experimental
results reported in Chapter 7 show that the runjpméormances achieved are almost
comparable with those of the native Snort.

On the other side, it is worth noting that NetlL net a suitable language for
programming the NetVM by hand, since it sits aba kw level of abstraction for a
programmer (i.e. it is comparable to an assemhlgguage), and its stack-based nature

strongly limit its readability. However, this shduhot be considered a limitation of the

89

5. Assessing the programmability of the NetVM

NetVM model, which is by design based on a middgu@gramming language and

aims at being an ideal target for several highllpvegramming languages.

90

6. Flexible Generation of Packet
Filtering and Field Extraction
Programs

6.1. Introduction

In order to demonstrate the possibility of decaupline logic of a packet processing
application from the knowledge of the actual forrothe supported network protocols,
while still ensuring runtime performances that emenparable with those of equivalent
applications relying on hardcoded protocol desmi®, a compiler for the dynamic
generation of packet filtering and field extractiprograms has been designed and
implemented.

Both filtering and field extraction rely on pack#gmultiplexing, i.e. a functionality
for recognizing the full sequence of protocol headmntained in network packets. For
example, a filter on “TCP” would first check whethibe data-link frame contains an IP
header, then it would check the IP header for a T€&der indication. Finally, if such

sequence of conditions is completely satisfied, dbeesponding action is triggered.

91

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

Similarly, extracting the values of the source aedtination ports of the TCP header
requires to first check if packets contain a TCBtquol header (i.e. a filter on TCP is
applied) and then the actual values of the dedieddis can be loaded from the packet
buffer and made available to the user for furtlrecpssing.

Demultiplexing programs implementing high leveldiing predicates are usually
generated by a compiler through routines, hardcanléde compiler itself, that emit a
sequence of checks on the values loaded at spedtifets of the packet buffer. For
instance, such approach is taken by the libpcaprlfp which provides an API for the
translation of simple filtering rules into a progrdor the BPF virtual machine [55]. The
lack of flexibility in supporting new protocols, vdhn requires the compiler to be
extended (i.e., rewritten), represents a probleemfthe maintainability point of view.
For example, in order to support a previously upsuied protocol, the compiler must
be modified in several points: (i) new tokens reprdging the names of the new protocol
and its fields must be added to the lexical scaohdéne parser, (ii) the code generator
routines must be extended for generating the probecks on header fields, and (iii)
already working routines must be made aware oh#vely supported protocol.

The compiler presented here overcomes such limitatby decoupling the code
generation process from the knowledge of the formhatotocol headers, which resides
in an external NetPDL database. In particular, EétPprotocol descriptions are
translated into packet demultiplexing programs thmglement high level filtering rules
expressed in the Network Packet Filtering Langu&gPFL). The generated code can

be directly executed on any implementation of tleeMW virtual machine.

92

6.2. Generating Packet Filtering Programs from NetPand NetPFL

6.2. Generating Packet Filtering Programs from
NetPDL and NetPFL

In our compiler, we consider a packet filter asragpam composed by two main
sections: i) a packet demultiplexing section, where the segei@i the headers carried
by each packet is analyzed looking for a specifatqrol, andi{) a section where some
conditions on one or more fields are evaluatedthadorresponding action is triggered.
In other words, the packet filter looks for thesfioccurrence of the specified header
inside the packet and then checks some conditiome or more of its fields, as shown
in Figure 27 In our discussion we will focus mainly on packiéering, because field
extraction programs follow a scheme that is veryilar to the one described, except
that field values are loaded from the packet budfed used by other modules instead of

being evaluated by filtering conditions.

NetPFL Rule
| tcp.dport == 80 returnpacket |

Incoming packet

[eh T oo]

Packet contains TCP

|

s dport == 807 yes

drop packet return packet

(a) Packet Demultiplexing (b) Check on protocol fields

Figure 27. Filtering program as the compositiorfagfa packet demultiplexing section and (b) a sedibr
checking conditions on the target protocol fields

6.2.1. The Protocol Encapsulation Graph

Considering a NetPDL database, encapsulation oekttips that exist between

protocols can be used to identify a directed gi@p¥,A) where each nodé represents

93

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

a protocol in the database, and an eglge y)is directed from the nodeto the nodey,
if the protocoly can be encapsulated into the protocalVe call such a graph a Protocol
Encapsulation Graph, or encapsulation graph.

The encapsulation graph exposes the layered nafunetwork protocols and has
some similarities with the concept of Protocol Grape. a directed acyclic graph
employed for describing the use relations exisbiatyveen the different components of
a multi-protocol communications system [56]. Howethee encapsulation graph allows
paths between nodes to be cyclic, making evidemtcdses of protocols that can be
tunneled, like IPv4 encapsulated in IPv4, IPv6Rn4 and vice-versa, or cases like an
ICMP message encapsulated in IPv4, which carriestler IPv4 header (belonging to
the packet that generated the message), and more.

Figure 28 shows how complex an encapsulation gcaphbe. In particular, it shows
the encapsulation graph corresponding to a sulfs#teocurrent NetPDL database,

containing only some protocols up to the trans|ayer.

94

6.2. Generating Packet Filtering Programs from NetPand NetPFL

startproto

Figure 28. Protocol Encapsulation Graph.

6.2.2. Packet Demultiplexing

In the proposed model, the first section of a genpacket filter needs to parse the
sequence of headers, while looking for a specifmtqzol. Since the encapsulation
graph represents the union of all the demultiplgxpaths that lead to every protocol
defined in a NetPDL database, we can leverage siicimation by considering only
the set of paths that lead to the protocol we aokihg for, i.e. a sub-graph of the
encapsulation graph. Since the characteristich®fencapsulation graph ensure that a
single source node always exists (i.e. the nodeesponding to the startproto protocol),
a reverse postorder visit starting from a geneodeN will identify a subgraph that is

the union of all the paths leaving from the startpmode, leading tN itself.

95

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

Procedure GenFi | t er Code(Node n, Expr e)
Begin
TargetProtocolNode =n
For each p in EncapsulationGraph
p.visited = false

RPOQO_Visit(n)
If (e)
GenCodeForSection(TargetProtocolNode.Format)
GenCodeForExpr(e)
If (ITargetProtocolNode.successors.empty())
GenCodeForSection(TargetProtocolNode.Encapsulation)
End

Procedure RPO Vi si t (Node n)
Begin
If (n.visited)
Return
n.visited = true
For each p in n.predecessors
RPO_Visit(p)
GenCode(n)
End

Procedure GenCode(Node n)
Begin
If (n # TargetProtocolNode)
GenCodeForSection(n.Format)
GenCodeForSection(n.Encapsulation)
End

Figure 29. Code Generation Algorithm.

Given such considerations, our strategy for gemayaa packet filtering program
through NetPDL is presented in the algorithnFigiire 29 The code generation process
is driven by theGenFilterCode() procedure that accepts as arguments the node
corresponding to the protocol on which the souitterfis set (e.g. ip "), and an
optional expression evaluating some of its fiekelg.(‘dst == 10.0.0.1 "). Briefly,

the algorithm performs a reverse postorder visittloe encapsulation graph starting
from the target node (i.e. the node relative to phetocol to be searched). Then, it
generates the code related to the format (whickdsired in order to be able to locate
every field of the selected protocol) and the esa&giion (which is required to be able
to link the current protocol to its successor nydssctions, for all the protocols
encountered during the visit. In particular, theagsulation section can be modelled as
a multi-target branch instruction, i.e. a genemgtgh-case construct, which evaluates

the content of some header fields, and where eaatch leads to the code generated for

96

6.2. Generating Packet Filtering Programs from NetPand NetPFL

the protocols corresponding to the successor notiélse one being visited, while a
special branch is directed to a “filter-false” elabel for indicating the absence of a
match. Some exceptions arise for the target protGem, the protocol we want to
locate), in which the code has to be generated slightly different manner. For
example, if the source filtering expression evaaaome fields of the target protocol
header, theGenCodeForSection() procedure is invoked in order to generate a
portion of code for locating them, while tiBenCodeForExpr() generates the final
check. Furthermore, if the target protocol node &ag successors (the encapsulation
graph can contain loop) th&enCodeForSection() procedure translates its
encapsulation section, giving the opportunity twdfa match in subsequent tunneled
instances of the same protocol header, even ittineent header does not match the
filter. For instance, in case of an IPv4 in IPvartaling the external IP header may not
match the filter, while the internal one can.

Figure 30 shows the results of the two phases of the coderggon process for the
NetPFL rule defined in the example: (a) shows tbeign of the encapsulation graph
representing all the demultiplexing paths that lgad IP, while (b) shows the
representation of the generated code as a cofavolgraph.

The sample filter is matched when the first IP legambntaining a destination address
field equal to the 10.0.0.1 is found. If the fitBt header does not match the filtering
condition, the program continues to parse the palsiedollowing the demultiplexing
paths of the subgraph until it finds a match, aedches a terminal node (e.g., the end

of the packet).

97

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

ethernet:
locate_field(ether_type)

check_field(ether_type) T~

lic | locate_field(vlan_type)
check_field(vlan_type) ~ - _

lic:
locate_field(llc_dsap
check_field(llc_dsap

N
nap AN
\

snap:
ip | locate_field(snap_type
check_field(snap_type

ipve

|
|
|
|
|
|
|
|
|
|
|
ip \ :
\ I
ip_check: AN | |
locate_fields(nextp, dst) *, \ :F
dst==10.0.0.1? \ ‘\ |
T \ |
for N\ F
I3 \ ! |
| ip_encap_check: Lo
Pl check_field(nextp b
I

|
\ ipv6 AN J I
\ \ | |
. \ |
ipv6: \ FO
locate_field(next_hdr) ‘. Flicmp: Vo

check_field(next_hdr AN Lo .

N N ,
~ S \ / /
icmpv6ipv6 ~ F S. \ ,' S
~ 77~ = +Tiilter false

Figure 30. (a) Demultiplexing Paths and (b) Conlolw Graph for the filterip.dst == 10.0.0.1
returnpacket "

6.2.3. Locating header fields

In NetPDL, every field declaration not only iderdf a specific sequence of bytes
into the packet buffer, but implicitly tells whetiee next field will start. In particular,
the offset of a header field defined in a NetPDLablase is not specified explicitly, but
it can be implicitly derived by adding the offseidathe size of its preceding field, as in
(4).

98

6.3. The Compilation Process

Offs(Field) = Offs(Field-1) + Size(Fielg1) (4)

This rule can be used to map the protocol formtd a sequence of instructions for
identifying the actual offset and size of everyldieUnfortunately, most protocols
include fields whose size is known only at run-timich prevents this computation to
be performed at compile-time. Besides, since dfierpackets can take different
demultiplexing paths, even the starting offset apacific header cannot be known in
advance. Given such considerations, the cleanegtfavagenerating a portion of code
for locating header fields inside packets is togtate the entirgformat> section of a
NetPDL description to a sequence of instructiorsd timnplement the scheme described
in (6), and to delegate the task of removing usetes redundant code to a series of
optimization steps. Such choice is based on thetliat the evaluation of the content of
some fields performed in encapsulation and filggiwonditions can be treated like uses
of particular variables (i.e. the fields). Usingnpile data-flow analyses, the instructions
defining variables that will never be used can letected and safely removed.
Moreover, the definitions of fields of fixed sizarc be subject to the application of

constant propagation techniques. Sec@i3will provide more details on such topic.

6.3. The Compilation Process

The techniques described in the previous sectiore Heeen implemented in a
compiler for the translation of NetPFL rules inteeeutable code for the NetVM virtual
machine, through the exploitation of the informatan the format of network protocols
resident in an external NetPDL database. The cempadopts a traditional architecture
that includes a front-end component that transléites source program in a more
manageable intermediate representation (IR), ammaar, and a back-end for the

generation of the target executable code.

99

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

6.3.1. Code Generation

In a first phase the compiler parses the NetPDliooa database by gathering the
names of protocols and fields. At the same timeeth@apsulation graph is created for
modelling the encapsulation information definedhe NetPDL description. Then the
source NetPFL rule is parsed, while ensuring that filtering expression refers to
available protocols and fields. If the filteringpegssion is made up of terms related to
different protocols, the parser also tries to gréagether sub-expressions that include
terms referring to the same protocol. This enstiraseach one of such sub-expressions
can be implemented byi)(a demultiplexing program for searching the spedif
protocol and i{) a portion of code for checking the values ofdgebf the header. In
such way, a compound filter (i.e., which referdifferent protocols) can be generated
through the algorithm reported iyure 29for each sub-expression referring to the same
protocol, and by linking together all such portiarighe program, as shown myure 31

The optimization of composed filters is left todte work.

ip.src == 10.0.0.1 and ip.dst == 192.168.0.1
Subfilter 1

and

\Icp.dport == 80)

Portion of the filter searching
for IP and evaluating the

conditions: Subfilter 2
src ==10.0.0.1
and T
dst == 192.168.0.1 Portion of the filter searching
for TCP and evaluating the
' condition:
' dport == 80
' F R
1 . ’
' F
1 T
\'%

Filter False Filter True |

Figure 31. Composed filter.

During the IR generation phase, all the encapsuwatnd filtering conditions
referring to fields are translated into checks weger values loaded from the packet
memory (if the size of the field is less than oma&qto 4 bytes), or into string

comparison operations (for fields greater than fed)y References to bit-fields are

100

6.3. The Compilation Process

translated into masking operations on values loddau the packet buffer. Finally,
structured control flow constructs such as if-tleése, and loops are lowered to explicit
branch operations.

The generated intermediate representation of thdtheg filtering program can then

be optimized and finally translated to the target\WM executable code.

6.3.2. Field Extraction

In order to handle field extraction rules, the cgdaeration mechanism described so
far is extended with the possibility to record thetual offset and size of the fields
specified in a NetPFEextractfields() statement. In particular, since it is possible
to request the extraction of fields belonging tdfedent protocols, the algorithm
described in Figure 29, is extended with the cdjpplio visit in reverse post-order a
more complex subgraph of the encapsulation grajth, more than a target protocol,
because the generated program should be ableltovfall the demultiplexing paths
leading to each of them. Besides, for each tanggbpol, the appropriate statements are
generated for storing the offset and size of thkelé referenced in the NetPFL rule.

Such mechanism is exemplified in Figure 32, whicbveés the main phases involved
in the generation of a program implementing the P®¥&t rule
“extractfields(ip.src, tcp.dport, udp.sport) ”. Figure 32A shows a
minimal encapsulation graph containing only the efftlet, ip, arp, tcp and udp
protocols. Since thextractfields() rule specifies to extract some fields from the
ip, tcp and udp headers (namely ip.src, tcp.d@ort upd.sport), these protocols are
considered as the targets of the demultiplexindigdd be taken into account for
generating the code. Such demultiplexing pathstiiyes subgraph of the encapsulation
graph, which is shown in figure Figure 32B, withgit nodes annotated with the names

of the fields to be extracted.

101

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

startproto:
check(link-layar==sthernat|

/ N

T N
\

ethernat:

loeata fiald(stharnat. tvpa)
check_field(ethernet. type==IF)

-
s
-
/

locate_field{ip sre)
#tore_fieldiip.x

!
|
7 |
| checl_field{ip nextp==TCP)
|
| ¢l
,,,,,,,, Src I Y
"""" b ip2:
| chack_field(ip. nextp==UDF]
] | 7

/ \)

! |
|
|
|
|
\

startproto

tep II
locate_fisld(teop. dport) T
ztore_fisld(tep dport) I’

ued

=N
Tocate field udp sport]
store_fieldiudp.sport)

-
~— e e e —

- ~——

sport e i T

(A) (B) ©)
Encapsulation Demultiplexing Resulting
graph subgraph Control Flow Graph

Figure 32. Code generation phases for the NetPEL extractfields(ip.src, tcp.dport, udp.sport)”

Figure 32C shows the resulting control flow graphe code is generated in a similar
fashion respect to the case of packet filteringyisyting the subgraph in reverse post-
order (i.e. with a depth-first traversal where thlk predecessors of a node are visited
before the node itself), starting from target nodibe <format> section of each
protocol is translated into instructions for loogtithe fields required (i.e. those needed
by encapsulation rules or requested for field amtion), while each
<encapsulation> section is translated into branch instructionsipog to the next
protocols. Besides, for protocols annotated witbldB to be extracted, specific
instructions for storing the offset and size ofleéield are generated. In particular, in
order to communicate the extracted informationht® wser, the Info memory provided
by NetVM is exploited, and the list of fields spfiesl in anextractfields() rule
is directly mapped on specific locations of theolpiartition of the exchange buffer, as

exemplified in Figure 33.

102

6.3. The Compilation Process

extractfields(ip.src, tcp.dport, udp.sport)

Al

Y

NetVM | Field 1| Field 1| Field 2 | Field 2| Field 3| Field 3
Info Memory| Offset | size | offset | size | offset | size

Figure 33. Allocation of fields on NetVM Info Memplocations

6.3.3. Optimizations

The translation of NetPDL descriptions into seqesnof instructions for locating
header fields produces a large amount of redurctad, which is reduced through a set
of optimization steps. In particular, the definitgoof variables that are never used are
identified and safely removed by a dead store eltmon phase, while a constant
propagation phase recognizes the variables that &alonstant value and substitutes
their use with the direct use of the constant. &ioanstant propagation can transform
expressions evaluating variables in expressiontuatiag only constant values, it is
supported by a constant folding phase for substgusuch sub-expressions with their
result computed at compile-time. Besides, the lavgeto explicit branch instructions of
structured control flow constructs produces severafjuences of jump to jump
instructions that can be easily individuated analesced by inspecting the control flow
graph.

The quality of the generated code could be furingsroved by applying more
specialized optimizations like those proposed bgeBeet. al. in [57] for eliminating
redundant checks on the same fields and for redutia overall depth of the control
flow graph of composed filters; however the impletagion of such algorithms was

outside the scope of the current work.

103

6. Flexible Generation of Packet Filtering and Eiétxtraction Programs

6.4. Conclusion

This Chapter presents the architecture of a compid a set of techniques for the
dynamic generation of packet filtering and fieldraxtion programs from NetPFL rules
and NetPDL protocol descriptions, which constitutes base for a novel approach to
the development of packet processing applicationsse logic is decoupled from the
knowledge about the format of network protocols.

In order to minimize redundancies, the compilerlogp appropriate optimization
techniques, leading to code that, in some casespn¥letely equivalent to that of
similar programs based on the hardcoded approacheported in Section 7.2. This
demonstrates that the dynamic generation of efficipacket filtering and field
extraction modules from NetPDL is feasible, witle tdvantage of adding support for

new protocols or new encapsulation paths withoahging the application code.

104

/. Experimental Results

7.1. NetVM Snort Evaluation

The capability of the NetVM snort front-end to geate NetlL code from a real
Snort rule database has been assessed using aal offleset provided by the Snort
website in February 2007, which includes a totaB@58 rules, 1389 of them supported
by the application. Such an apparent limitatiormiginly due to the high number of
rules requiring normalization and inspection of el field of HTTP headers (i.e. the
“uricontent” option), which is a feature currentiypt supported. However, since the
main goal was to demonstrate the ability of NetvM allow the development of
complex packet processing applications and noctmeplete compatibility with Snort
features, such number can be considered a fair @wguse it includes all the rules
needing deep packet inspection functionalities. (6&ing and regular expression
matching), and it is in line with the number ofasiltaken into consideration by other
research workg1][52][53].

Table 3shows the number of NetIL instructions generatedhfthe abovementioned
ruleset for each module of the IDS. From the tables evident that the Content

105

A.1l. Xelerated X11

Matching module is the one with the highest numbgrinstructions. The reason
depends on the complexity of the rules involvingnteat matching options. In
particular, when a match is found for the first ot option, all other patterns
eventually specified by the rule must be extengive&arched inside the payload.
Moreover, the first match could trigger more thare oule, making the generated code

extremely complex.

Table 3. Number of NetlL instructions generateddach module

Module Number of NetlL instructions
Analyzer 137
Content Matching 38872
ethernet 10
ip 4531
icmp 5547
udp 4806
tcp 5127
Connection Tracking 141
Conn. Status Matching 6228
Total 65399

The time needed by the rule compiler for generdativegcode is comparable with the
one of the native Snort fed with the same datal@s#aining only the rules supported
by both tools. In particular, the NetVM based ID@#npiles 1389 rules in 1,72 s, against
the 1,25 s measured for Snort.

Since the runtime performances of the IDS depenthercapability of the NetVM
framework to generate efficient code for the targethitecture, detailed performance

results will be reported in Section 7.3.

7.2. NetPDL/NetPFL Compiler Evaluation

This section assesses the ability of the NetPDIPREetcompiler to generate NetlL

filtering programs from simple NetPFL rules and games the results with equivalent

106

A.1.1. The pipeline

filters generated for the BPF virtual machine by well-known libpcap/tcpdump tools.

As an example, translating the NetPFL rule

ip.dst == 10.0.0.1 returnpacket

into executable code for the NetVM virtual machnesults in the optimized filtering

program shown ifigure 34

upload.16 ;load the ethertype field
push 2048 ;0x800

push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field
push 167772161 ;10.0.0.1

ACCEPT:

pkt.send outl filter true
DISCARD:

ret filter false

push 12 ;offset of the ethertype field

jcmp.neq DISCARD ;compare and jump to DISCARD if no

jcmp.neq DISCARD ;compare and jump to DISCARD if no

t equal

t equal

Figure 34. NetlL code generated for the filesrc==10.0.0.1

with a minimal NetPDL DB

The corresponding BPF filter generated throughttbeump tool is shown irigure

35.
(0) Idh [12] ;load the ethertype fi
(1) jeq #0x800 jt 2 jf 5 ;if ==0x800 goto 2, el
(2) Id [30] ;load the ipdst field
(3) jeq #0xa000001 jt 4 jf 5 ;if ==10.0.0.1 goto 4,
(4) ret #1514 ;return the frame leng
(5) ret #0 ;return false

eld
se goto 3

else goto 5
th

Figure 35. BPF code for the filter ip.src == 10.0.0

Besides the intrinsic differences between BPF amiVM architectures (i.e. the

NetVM is stack-based while the BPF virtual machmeegister based), we can see that

two programs are functionally equivalent. Both ¢hélwe Ethernet type field against

value 0x800 , then check if the IP destination field containgli@ss10.0.0.1 ; the

packet is accepted only if both conditions are.titee primary difference between the

two approaches is not immediately visible, becaussates to the simplicity in adding

107

A.1l. Xelerated X11

support for new protocols (e.g. a new data-linkefaprotocol). In the case of the
presented compiler it is sufficient to update thHdLXfile containing NetPDL protocol
descriptions, while in the other case some of ithgchp source files must be modified
and the library must be recompiled.

Since NetPDL supports a wide variety of protocaisl &yclic encapsulations, the
programs produced by the NetPDL/NetPFL compiler aray larger than the
corresponding BPF filters. For instance a non-ojziah IP filter generated using the
standard NetPDL database counts 292 statementsusve4 statements of the
corresponding BPF program, as showdnie 4 However, while BPF only identifies IP
packets directly encapsulated within a lower lgyacket, the abovementioned NetPDL-
derived program identifies IP packets encapsulaieseveral possible ways (e.g., an
IPv4 packet tunnelled within another IPv6 pack#tshould be noted that the higher
number of instructions generated by the compilersdaot correspond to the number of
instructions effectively executed in the “fast gaththe code (i.e. the typical number of
instructions executed at runtime on common paaleees), however as will be shown
in the next Section, the capability of recognizo@mplex encapsulations comes at a

cost in terms of performances, because all thellplessases must be taken into account.
Table 4. Number of Statements Generated by Diftetampilers.

Filterl Filter2 Filter3 Filter4 Filter5
BPF 4 6 6 17 9
NetlL(reduced db) 10 14 23 76 26
NetlIL (complete db) 292 491 487 1544 497

Currently, the NetPFL compiler is not optimized &peed in code generation. For
instance, the libpcap compiler needs aboutu$2t® compile the tép.dport ==

80" filter, against 87ms of the NetPFL. Although thialue is still reasonable, this

108

A.1.1. The pipeline

result is mostly due to the very different numbérstatements generated by the two
compilers before optimizations, which differs ofoab two orders of magnitude, as
shown inTable 4 (first and third lines). It is worth recalling ththe compilation time

usually grows non-linearly with program size.

7.3. Performance Evaluation of the NetVM
Framework

This section presents some tests that demonstrat@drformance of the NetVM
model and of its compiling infrastructure compatedther technologies. The tests are
based on the two frontends available for the Net\Mgt are the NetPDL/NetPFL

compiler for packet filtering programs and the NtShortintrusion Detection Sensor.

7.3.1. Testing the x86 back-end

Tests on the x86 platform measure the performariceo code emitted by our
compiler compared to two other targets. The fire s the code generated by the BPF
virtual machine, which is able to generate natisseanbly through the WinPcap Just-In-
Time compiler. Although the WinPcap JIT compilervisry simple compared to our
compiling infrastructure, it provides a useful bemark with a well-known and widely-
used architecture. The second target is made apsef of native programs created in C
language and compiled with Microsoft Visual Studiwhich represents the real
touchstone of our solution. The native C filterge @scustom macro to speed up byte-
ordering operations, instead of using the standéstd() functions of the C standard

library.

109

A.1l. Xelerated X11

Five packet filterswith different complexity have been defined anditlexecution
time has been profiled through the RDTSC assemisiruction available on the x86
architecture. Tests were performed on a Windowsdasachine, equipped with a
Pentium 4 processor, running at 3GHz with Hypere®king and 4GB of memory.

Results presented irable 5show that our compiler generates code that igifabin
that produced by the other technologies undemigskilain reasons rely on the intrinsic
properties of the NetVM model, which exports somgeful information to the
compiling infrastructure, thus enabling very effeet albeit simple, optimizations (such
as compile-time constant swapping). Since the chanatics of packet-processing
applications are taken into consideration in ther@rcompilation process, the NetVM
compiler can perform more aggressive optimizatibas its counterparts. Notably, this
is obtained with a limited set of optimizations qmarned to commercial compilers (such
as Microsoft Visual Studio). Additionally, resultshow that both the mid-level
optimizations and those implemented in the x86 fauk introduce a substantial boost

in performance (third column) compared to non-opéd code (second column).

Table 5. Filtering time on the x86 back-end (ticks)

Filter NetVM no opt NetVM opt BPF Native

1 23 7 36 8

2 26 12 39 26
3 30 15 39 13
4 52 39 76 61
5 35 21 43 34

* Filters, according to the well-known libpcap/Wo#p syntax are “ip” (filterl), “ip src

10.1.1.1" (filter2), “ip and tcp” (filter3), “ip €r 10.1.1.1 and ip dst == 10.2.2.2 and tcp src port
and tcp dst port 30" (filter4) and “ip src 10.4.44 ip src 10.3.3.3 or ip src 10.2.2.2 or ip src
10.1.1.1” (filter5). The test packet was createdhs filtering code was executed entirely before
returning to the caller.

110

A.1.1. The pipeline

The capabilities of the x86 backend have been ssdesso with the NetVM Snort

IDS, fed with the same rule database describeadati® 7.1, which includes a total of

1389 supported by the applicationable 6 shows the number of x86 instructions

generated from the NetlL modules by the NetVM Jbmegiler, and the actual size in

memory of the target machine code.

Table 6. Number of x86 instructions and actual cside

Module Number of x86 instructions Code size (bytes)
Protocol Analyzer 163 613
Content Matching 268.667 1.130.250
Ethernet 20 104
IPv4 2.057 13.991
ICMP 2.906 16.737
UDP 1.838 13.173
TCP 2.100 14.442
Connection Tracking 261 1.271
Conn. Status Matching 2.097 14.054
Total 280.109 1.204.635

The performances of the IDS sensor have been asséss measuring the time

needed to process a trace of 10M packets capturedreal network and by comparing

the results with those obtained running Snort urtdersame conditions (i.e., using the

same rule database). All the tests were perfornmed Dual Xeon running at 3,4 GHz

equipped with Linux 2.6.20-15 SMP. The NetVM apation was compiled Just in

Time into x86 assembly, while Snort was compiletbtigh GCC version 4.1.2. The

111

A.1l. Xelerated X11

console output of the two tools was disabled ineortb reduce every additional
perturbation on the execution time that still irtdds the time needed for reading packets
from file. Besides, all the features not suppofbgdthe NetVM Snort IDS (e.g. flow
reassembly) were disabled in the native Snort. {€sts have been repeated 12 times,
and results have been averaged excluding the bddha worst run. Results are shown

in Table 7.

Table 7. Throughput of the two applications

Application Packets/Second
NetVM IDS (with x86 JIT) 70.344
Snort (native) 97.922

Results look interesting. Performances of the IBBser translated into native x86
code look promising, with the presented implemeaatunning at 70% of the speed of
the original Snort. Differences in speed are duseeral factors: the IDS code that
does not implements all the performance-orienteckgr of Snort because of the
complexity of generating such this code in Netllseaably. For instance, testing the
destination port instead of the source port firstkes a big difference in performance,
and such these tricks are rather common in thenatigsnort. In other words, the
performance penalties measured should be ascrilagnlyno the algorithms used for
analyzing packet data in the NetVM-based Snort, raefattoring the application would

lead to performances comparable to those of theen8nort.

7.3.2. Testing the Octeon back-end

The first test on the Octeon back-end shows theltseebtained with the same five
filters already presented in the previous sectidure to the lack of a BPF JIT compiler
for this platform, NetVM filters are compared ority handwritten ones, the latter using

the GNU C compiler (GCC). Results (in clock ticlas@ presented imable 8 Also in this

112

A.1.1. The pipeline

case the code generated through the NetVM compmslemore efficient than that
produced by the counterpart, thanks to the set piimizations performed before
emitting the code. In this case, the number ofstiska good indication of the number of
instructions emitted for each filter, because thee®n processor is based on a MIPS
pipelined architecture where most instructionsextecuted in exactly one clock cycle.
These numbers can be further improved (although ihileft to future work) by

integrating a proper instruction reordering phasavoid pipeline stalls.

Table 8. Filtering time on the Octeon back-endkfjc

Filter NetVM Native
1 9 8
2 14 15
3 17 20
4 51 62
5 29 32

The NetVM Snort application has been profiled atso the Octeon platform.
Although a direct comparison with the original Sn® not possible (processing
algorithms are not exactly the same, and the aidamort does not run on the Octeon
platform because of memory limitations), the masuit is that NetVMSnort compiles
and runs on the Octeon platform and is able toaxphtive hardware coprocessors.
This demonstrates the possibility of mapping evetomplex NetVM application on
this architecture, hence the validity of the NetWiMdel. Furthermoreiable 9shows the
comparison between the time spent in coprocessaoitsof the total time used by the
application to complete its job) between the x8&tfpfrm, where string-matching is
executed in software, and the Octeon platform, wh&ring-matching is executed
through a hardware DFA engine, demonstrates tratNatVM model enables the
efficient exploitation of native hardware features platforms in which these are

available.

113

A.1l. Xelerated X11

Table 9. String matching performance on Octeonxatd

Platform Per centage of thetime spent in string matching
Octeon 3.79%
x86 13.44%

7.3.3. Testing the X11 back-end

The X11 architecture presents many properties tiete it predictable, allowing to
exactly determine the behaviour of a program thinooff-line static analysis, without
runtime benchmarking. The reason is that througlgebnstant, as long as the code fits
into the instruction memory of the systolic pipeliTherefore, if the code is proven correct,
a useful evaluation metric is the amount of ingtams generated by the compiler. With a
fixed size pipeline and a given number of passasstating a program to fewer instructions
allows more features to fit in the program with Hagne deterministic throughput.

For evaluating the X11 backend, two test prograresewised(i) a module of the
NetVM Snort IDS, which performs L2-3-4 packet insplen and saves data for
subsequent modules, afi a simple packet filter that demultiplexes and ¢surCP
packets directed to port 80. Although these apfitina are small, we claim that the
operations they perform are rather common in papketessing programs and stress
several NetVM capabilities, using coprocessorssawral kinds of memory.

Since there are currently no other optimizing cderpifor the X11, it is hard to the get
the baseline results needed to evaluate the peafarenof the NetVM compiler. To get
relevant results the source programs were firsistedied with all optimizations turned off.
A second compilation was performed on the samecsofites, with all the automatic
optimizations enabled. Afterwards the code, asadlyeoptimized by the compiler, was
further processed by hand to apply a wider rangdrarisformations, using standard

optimization guidelines used by Xelerated. The sgnoeedure was repeated keeping the

114

A.1.1. The pipeline

VLIW merging algorithm disabled in order to bettgpreciate its impact on the resulting
code size.

Results are shown irigure 36 the ones related to the IDS module are on the lef
(Figure 3@), while the ones related to the filter applicatere on the rightr(gure 3d).
Both the total number of instructions are shownwa#i as the number of resulting
VLIWSs after instruction merging. As it can be setive number of instructions for the
Snort application is 86/76 for the automated anadharitten cases respectively, while
the corresponding numbers for the filter applicat® 23/19. After instruction merging,

the results were 68/48 for the Snort module and2®r the filtering.

120 70
11T 111 @ Total instructions 62 62 @ Total instructions
100 +— B Resulting VLIWs |— 60 T—— B Resulting VLIWs [
86
50 —
80 +—— s
68
40—
0T 48
30 ——
1l | 23 22
40 19
20 T
20 —
N —t
0 : : 0 : .
No optimizations Automatic optimizations Manual optimizations No optimizations Automatic optimizations ~ Manual optimizations
(a) IDS Module (b) TCP Filter

Figure 36. Code size for the test programs

Current results are encouraging: even with a pyp®tcompiler and small
applications, the instruction count obtained with tompiler is within 20% of the size
of hand-optimized code before VLIW merging. Moreg\this was obtained by a proof-
of-concept code that often used simple algorithonspeed up the implementation. We
believe production-quality code can push this itesuén more. The differences between
manual and automatic optimizations can be mainlyriled to the simple VLIW
merging algorithm employed, that does not perfamstruction reordering, and to some
missed copy folding opportunities. Both these isscan be addressed with standard
techniques described in literature that do not ireqa redesign of the compiler

framework to be implemented.

115

A.1l. Xelerated X11

8. Conclusions

This work analyzes the possibility to introduce sonegree of flexibility in the
design and development of high-speed packet priogespplications, like those that
must be executed in network nodes subjected t@eddwraffic rates and where runtime
performances play a key factor.

The very general term “flexibility” has been coresied in two specific contexts, i.e.
(i) as the possibility to enhance the portability peficket processing programs for
enabling the reuse of sofware solutions acrossdmgteeous processing architectures,
while still ensuring the fulfillment of stringenedormance requirements, ang @s the
possibility to seamlessly integrate support to hgwetocols and functionalities in
packet processing applications, thus enabling éveldpment of efficient and protocol-
agnostic programs.

The former point has been addressed by refiningctmeept of Network Virtual
Machine, i.e. a programming model based on an atigin layer for the development
of platform independent packet processing prograwiich completely hides the

characteristics of the hardware to the programthess enabling source code portability

116

A.1.1. The pipeline

across a set of heterogenous architectures. A noajaribution of this work relies on
the demonstration of the fact that the use of amom abstraction layer, if well
designed, instead of introducing a lack of runtiperformances, enables the
deployment of special purpose mapping techniquatscibncurrent and general purpose
programming models do not allow, thus leading togpams that are both portable and
efficient at the same time. This is possible bytgapg in the programming model the
characteristics of the peculiar application domaifipwing the programmer and a
backend compiler to better share the knowledgéerattual semantics of the program,
with the result of enabling the application of maggressive optimization techniques.

On the other hand, the problem of decoupling thgicloof packet processing
applications from the knowledge of the format ofwak protocols in an efficient way
has been addressed by leveraging the featureslaiguage for the description of
network protocols (NetPDL) and a language for fhecgication of packet filtering and
field extraction programs (NetPFL). Using these ponents it is possible to create
protocol-agnostic applications, however, in ordes #fchieve good runtime
performances, dynamic compilation techniques mastraployed for the translation of
the two languages into native code.

During this thesis the proposed technologies haenbmplemented and validated.
In particular, a framework composed of a portablg&ime environment and a compiler
infrastructure, capable of JIT and AOT compilatidrgve been implemented. The
framework allows to seamlessly port NetVM applioa on three extremely
heterogeneous architectures (i.e. the Intel x86,GhAvium Octeon and the Xelerated
X11), with performances that are comparable andesiomes better than those obtained
with alternative state-of-the-art compilers. Thisnwnstrates the assumption that
portability and efficiency can be achieved altogeth when domain-specific

characteristics are adequately captured in theranmging model.

117

A.1l. Xelerated X11

The capability of the NetVM model to support thevelepment of complex
applications has been demonstrated by implemerdirgpmplete network intrusion
detection sensor, which performs packet procesasirayl networking layers, leading to
results almost comparable to those obtained by quivalent application (Snort)
running natively.

The possibility to efficiently decouple the logi€t macket processing programs from
the knowledge of the format of network protocolashbeen demonstrated by
implementing a compiler for the NetPDL and NetPBhduages, which is capable of
generating packet filtering programs to be executsd the NetVM runtime
environment. Results show that in some cases tmerged code is completely
equivalent to the one generated by alternativetisoisi like the libpcap compiler for the
BPF, which is based on hardcoded protocol desoripti Moreover, thanks to the
effectiveness of the NetVM compiler infrastructuttee runtime performances of packet
filters generated from NetPDL/NetPFL can outperfahmse of equivalent hand-written
programs compiled with state-of-the-art compilers.

Regarding the NetVM programming model, future wevkl be devoted to the
investigation of the possibility to automaticallgrfition packet processing applications
on symmetric multi-core architectures, as well@she analysis of problems related to
the introduction of safety enforcing capabilitiagiie NetVM runtime environment.

The work related to the dynamic generation of pagkecessing programs from
external protocol descriptions will be directed &wds the analysis of techniques for
minimizing the number of redundant checks in padietrs obtained by the boolean
composition of basic filters (i.e. those based amditions on fields of a single
protocol), by leveraging the information provideglthe presence of an “encapsulation
graph” (see Section 6.2.1). Besides, constructdorectly handling the presence of

tunneling loops in packet headers are being includdetPFL.

118

A. Network Processor Architectures

A.l. Xelerated X11

The X11 processor is a systolic processor. In nieglithe term ’'systole’ is used to
refer to the rhythmical contraction of the hearietr sends blood throughout the whole
body by pulsing. A parallelism can be drawn to cabtmg systems where many
processing units are linked together with hardwirgdrconnections and synchronized
so that new data can be periodically sent intod @sults can be extracted from the
system, and a steady flow of data is sustainedh &uthitectures can be very regular

and might be more easy to implement with VLSI texdbgy.

A.1.1 Thepipeline

The X11 is made of units called PISC (Packet Isibn Set Computers) which are
connected to each other in a very long pipelingal2aters the pipeline at the first PISC

unit and exits the pipeline at the last PISC uiitery cycle data is moved from a PISC

119

A.1l. Xelerated X11

to the following one and every PISC performs artrutsion on the data that has
currently available, until the end of the pipelisgeached.

The PISC pipeline is augmented with Engine AccessitB. These devices are
interleaved between PISC blocks and serve as ttesado external engines, which can
be used to offload part of the computational coxipfeoff the PISC pipeline. Figure 37

shows a pipeline segment.

Processor n Processor n+1 Processor n+2

5 Set Offset
Unit

_’“__+

Move Double Register Synch Move Double Move Double
Word Unit : FIFO Word Unit :
I Packet Memory l "
: Synch FIFO

Word Unit
Instruction %Instruction Instruction

Set Offset
Unit

- -

R,

I/0 Processor n

?instruction £ |Instruction : | |Instruction

Figure 37. Detail of the X11 pipeline, showing 3Bk and an EAP. Courtesy of Xelerated AB. Excempnhf
[58].

The entire pipeline is completely synchronous. &hean be no stalls and no data can
go lost in the PISCs and, under nominal operatimgditions, in the EAPs. Packets
enter the pipeline by the RX Arbiter, a device whieeds the first EAP (which, in turn,
feeds the first PISC). Conversely, packets exitgipeline by the TX Selector, which is
fed by the last PISC in the pipeline. Since the hmachine is synchronous, the
maximum rate of packets entering the pipeline ghtty related to the frequency of
machine cycles, and (if no packets are droppedbyptogrammer) is equal to the rate
of packets exiting the pipeline as well. There afew consideration to make about the
X11 processor that stem from the pipeline orgamnatf the PISCs and the systolic

architecture:
120

A.1.1. The pipeline

the amount of time required for processing evenglsi packet is well-defined and
known a-priori;

there is a strict instruction budget limit thateaffs programs written for the X11.

The first point derives from the fact that evergloet follows exactly the same steps
along the same physical units along the pipelire ddortcuts’ can be taken to jump to
a later stage: if the particular program execut@mma given packets happens to use less
instructions than the number of PISCs, we must veaitdata to reach the end of the
pipeline before the packet can be emitted. Theneatso be no waits of undetermined
length in the pipeline, because every unit is ableomplete its work within a single
machine cycle. As a first approximation, no intérbaffering is needed, or possible.
The second point is a consequence of the finitgtheaf the pipeline: once a packet has
reached the end of it, processing is forced to iteata as there are no other execution
units available. It is therefore impossible to axeca program that might require more
instructions than the number of PISC processorthénpipeline. In order to let the
programmer write longer, more complex programs taasingle pass in the pipeline
would allow, a loopback path is provided so thatke#s exiting the pipeline can reenter
it for further processing. To preserve packet ardgrthe number of pipeline passes is
equal for every packet and is statically configuaédompile time. If any quantity of the
packets requires two or more pipeline passes focgssing, every packet is bound to
follow the same path and loop the same numberneégi The maximum amount of
iterations in the pipeline is fixed, and so ith® tmaximum possible execution time for
any program. Using too many pipeline passes is siratde. The number of loop
interfaces is limited so they must be used spayiagt adding pipeline passes increases
the processing latency. Finally, there is an upipgt on the number of pipeline passes
given by the clock frequency of the X11 NP (whichviously cannot be scaled

arbitrarily) and the packet rate requirement: d thany pipeline passes are required, the

121

A.1l. Xelerated X11

packet insertion rate in the pipeline must be |l@derHowever the X11 NP is
dimensioned so that multiple passes are possiblide vdatisfying the wire speed

requirements.

A.1.2 PISC units

PISC processors are the core of the X11 Networkd®sor. They are VLIW, 16- bit
processors with a packet-oriented, RISC-like irdtom set. They work on a general-
purpose register file which holds operands andltesData can be of 8-bit or 16-bit
size. 32-bit operands are not directly supportedpécial purpose register file holds the
device registers, which are used to configure tipelipe and to hold other specific
information. PISCs are made of 4 different functibunits:

ALU, which handles arithmetical operation;

Copy unit, which can be used to move data betwhenpacket memory and the
register file, or different locations in the regisfile;

Jump unit, which is used to execute jumps (conadti@nd unconditional);

Load offset unit, which purpose is to load the ke offset registers.

All the ALU operations must be performed over eitBeor 16 bits at a time. 32-bit
operations can be implemented with multiple 16Htructions. On the contrary, the
copy unit is able to move up to 32 bits at a tim#hva single instruction. The PISCs
operate on very long instruction words (VLIWs) camed of four opcodes, one for
every functional unit. At most one VLIW is executad each PISC every machine
cycle, as instructed by the RIP (Row InstructionnBa) register in the device register
file. There are no instructions that take multiplachine cycles to complete. In case a
functional unit is not needed, its opcode in thelWLinstruction can be set to a no-
operation. Every PISC has a private amount of cowemory that holds multiple

instructions. If we consider the whole PISC pipelithe PISC instruction memory form

122

A.1.2. PISC units

a rectangular matrix. Every PISC has associateidglescolumn of memory, and the
active row is specified by the RIP register. Lineade sequences are usually laid out
along rows, so that consecutive PISCs execute msteuction of the sequence each.
After the instruction for the current cycle is Bhed executing the data the PISC is
working on is forwarded to the following stage bétpipeline and new data is received
by the previous one, according to the systolic matf the X11 NP. The systolic
structure of the architecture makes it so that datat be forwarded in every machine
cycle. This makes it impossible for a packet to tgwk" to a previous PISC or to a
processor that is not the immediate successoreotdnrent one. Under this light it is
important to understand what jumps mean on the XP1 the value of the RIP is
modified so that the next PISC will execute anringion that lies on a memory row
different from the current one, but in no way thatad flow between the pipeline
elements can be altered. The code must be laidiroumemory accordingly. The
execution of any instruction in a specific PISC gassor is inhibited if the Focus bit,
held in one of the device registers, is set. Irt ttzse the PISC processor acts like a
pass-through device for all the data it receivesyérding them to the next stage with
the correct timing. There are programmatic wayseéband reset the Focus bit. In the
pipeline sequences of PISCs are interleaved witlP€AEach group of consecutive
PISCs between two EAPs (or between an EAP andrtieotthe pipeline) is called a
PISC block.

A.2. Cavium Octeon CN38X X
The Octeon CNX3800 is a Network Service Procedd®) targeted at network and
network security applications. Like most NPs itegrates many processing units to

exploit packet processing application parallelidincan have from two to sixteen

123

A.2. Cavium Octeon CN38XX

processing corexcnMIPS which are a simple, high-performance, dual-issue
implementation of the MIPS64®integer version 2iastion se{59].

PCIX EEPROM UART BootFlash

UART GPIO
b4 4 I
IDvBI.Is I : SMIMDIO
Cores | MIO LED
{ SEERSOpRY Detenministic T3 Low-Latency
Compression / =1 F'n'tEES;‘;?WE BRAM
Decol Fession i
mp ——Low-Latency
Random Number e
d 1 ML =
_ 5Sync | Packet Order/ — Generator
Dusiissunintager |* Work (POW) [~ (RNG) |
Key Memory
m=====n (KEY)
= || Fetchand Add | ! Splas
12y Unit (FAU :
L | Crypto) L— GMX/SPIO or
oy Acceleration | A | 4 xRGMII
o | I
= | Free Pool
Coherent Memory O Bridge | Nclggit?r
Bus | (10B)
L I : 3
250 & _»K_ o _| Timer Unit
- — |
Level-2 Cache({L2C) T 11 SPl4.2
Controller | (PD} | | GMX/SPIL or
I - | Eﬂ';]kif_ 4 xRGMII
PIP i
| {FIE || (PKO) I
SDRAM , | A4
Controller ;_PaCkEt tnputJ A
2
B4 orl28
DDR2Z SDRAM

Figure 38. Architecture of the Cavium Octeon NetwBrocessor

Figure 38 shows a block representation of the ahnghitecture. The left part (the
cores, the coherent memory bG#B, the level-2 cache and the DRAM controller)
implements an on-chip multiprocessor and a coherarhory system. The right part

contains the I/O bus and interfaces together wihfigurable 1/O and processing

SA dual-issue processor is able to process and &xéwaw instruction for each clock

cycle
124

A.2.1. Overall workings

hardware units. This part helps the cores in hagdlpackets arrival, queuing,
dispatching and forwarding, besides of hardwarelempntation of many packet

processing function (checksum, cryptography, etc.).

A.2.1 Overall workings

Before going through a deep analysis of the mopbiant components of the chip,
let's have a look to the path of a packet flowingpithe system. In this way we will
briefly introduce every component with his functiand have a first understanding of
the system internal workings and possibilities. rena@e many different algorithms for
efficient searching. Packets arrive via any of R&MIl, SPI-4.2, PCI or PCIl-x
interfaces. Thdé?acket Input Processing Units (PIRas the task of storing packet data
in on chip buffers or in DRAM together with infort@an needed by software like the
input port. This unit can also parse layer-two/#elgets for error condition and perform
TCP/UDP checksum.

Upon arrival, packets are transformed in workingtuto dispatch to cores. For
every packet a new work is created and queuedeiRdlcket Order Work unit (POW)
The works’ queue is the primary on-chip communaratiand synchronization
mechanism. cnMIPS cores can become aware of woakisng for elaboration either
with interrupt or polling and can request a worlaay time. Both cores and hardware
units can submit works to POW which then schedthies for the cores. So software
receives packets by obtaining the associated widctares. As we will see in A.2.4
both hardware and software can tag works in seveaigs. Tags are used to implement
synchronization and QoS mechanism.

There is a hardware unit, theee Pool Unit (FPA)which manages pools of pointers
to available packet buffers. Hardware and softweme allocate and free buffers
independently. Queues used by cores to submit cowhinta various on chip

coprocessors are dynamically allocated memory chaskvell.

125

A.2. Cavium Octeon CN38XX

Cores receive work units and process them. Whenfthiesh their elaboration they
either submit the work again to the POW and theanitather core (in this way cores can
be arranged in a pipeline fashion), or finally thean decide to send out the packet.
Packet transmission is managed by another spesdalimit, the Packet Output

Processing unit (PKO)

A.2.2 cnMIPS Cores

There are up to 16 cnMIPS Cores in OCTEON CN38XKey are a dual-issue
MIPS64® Version 2 integer instruction set implenaioin with also privileged
instructions. Two instructions can be fetched, dedoand issued per. All the cores
support a 5+ sta§epipeline (see figureigure 39 with a clock rate up to 600 MHz. They
also integrate a 32k 4-way instruction cache aB# &4-way data cache. They support
conditional clocking for minimal power dissipatiofhere is a core with special and

more privileged architecture (core 0) where theesyigor mode is implemented.

Besides the standard MIPS64® architecture some uBawspecific extensions are
implemented, like several bit manipulation instioigs, unaligned memory accesses,
specific cryptographic instructions. Cores can befigured as either little or big endian.
They do not support floating point arithmetic.

Each core has its own virtual memory space, whscbompletely private. We will see

that there specialized mechanism which permitiotee communication.

6We can identify five fuctional stage in the pipeljbut the last one uses more than one

clock time
126

A.2.3. Packet Input Processing Unit

It is possible to run a complete operating systentares, as well as industry standard
C/C++ applications. Obviously core 0 with privilebastructions would be the supervisor
core in an OS scenario. It is possible to partitores at boot in a way that some can run a
fully fledged operating system, while others cam @ native networking application.

Communication between the OS and the applicatioiddoe achieved by means of specific

OS drivers.
o 1 2 3 4 5 6 7
: . ' T Commit
o1 4 ‘
Bk e | ALU/ , ;
o iy, 2> Shift/ ' MUL / VMUL i
6 = o [Mul I ' f)
@ @ o = | i ‘ i =
Q= %) L« ' | &
gl = £ 7y £
S< %, O [: ' =
S o 2 T ALU/ Security Accelerators 0 o
2 S |, | shift — 7 - £8
Data Cache| ' T
FO | [O | [E |7 Loadl] ecaiiem [S T son =8
c inete, | | 5| Store/ 8KB [T*| 2KB j T
- Ml g | llcEmy 1 o=
. - A |MissFile ! Add 5
| s || gt T
A C A : o

' Branch

' |Prediction
' (512 x 2) i !
' ' a5 1

I

Figure 39. Octeon cnMIPS core pipeline

Cores use the Coherent Memory Bus to interface miémory and 1/O. This bus also
guarantees the coherence between the data cach#sofes. On the other hand, in order

to communicate between them, the cores provide tim&n mechanism:
» Using works and POW work queuing units (explaime&ection A.2.4)
» using shared memory regions (which requires softvto handle locking)

* using interrupts to signal other cores when shaegiables change

A.2.3 Packet I nput Processing Unit

The Packet Input Processing Unit (PIP) receive>adrom all the RGMII, SPI4.2, or

PCI interfaces treating all the ports the same Wagan manage up to 36 input ports at the

127

A.2. Cavium Octeon CN38XX

same time. When a packet arrives, the PIP allocatdsnrites packet data into buffers in a
format convenient to higher-layer software. Thet gnipports a programmable buffer size
and can distribute packet data across differerfelsifo support large packet input sizes.
This unit also creates a work for the packet. Tlekveontains a pointer to the buffered

packet, packet error checks, and hardware parsasglts (see A.2.4 for a deeper
explanation of work structures). In fact the PIRt wan perform three kinds of automatic
header parsing:

* uninterpreted parsing is skipped

» sKkip-to-L2 parses various Ethernet-like L2 header and cesrm@tie whether

IP is present in the packet
» skip-to-IP directly parse the contained IP packet

Normally the PIP unit writes packets in the L2/DRASYbring a pointer to the buffer in
the work structure, but if the packet is smallentli28bytes it is completely written into the
work, hopefully in an on-chip buffer. The PIP uni&n be configured to write other useful
values in the work structure:

 aQoSvalue, which gives packets different prioritiesl @ueues

* a Group value which decides to which cores the respectinek will be
scheduled. In fact cores can subscribe to diffeggnups. The group value can be
calculated from the input port or from the protgasding hardware parsing data. This
value can also be calculated from IP and TCP hetelerin order to give the same
value to packets belonging to the same TCP-flow

* aTagvalue, which can change the scheduling order cikgts.

After writing all work fields PIP unit passes thenmk to the POW unit.

A.2.4 Packet Order Work Unit

128

A.2.5. Free Pool Unit

The Packet Order Work Unit (POW) is a coprocessooviding important
synchronization functions. A work is described lyassociated work queue entry and may
be created by hardware or core software. The OCTE®Nralized packet input unit
creates a work upon every packet arrival. The POWt gueues the work entries
implementing eight input work queues. The POW oawdnfigured to treat each queue in a
different way, thus implementing different servieeels.

Cores request work from POW. This unit selects wlek for the core and return a
pointer to the work-queue entry. All work is notuatj in fact the POW supports 16
different groups. Each piece of work is associatgth a group. Each core has a
configuration variable which select which groupe ba submitted by the POW to that core.
In this way it's possible assign different functgoto different cores: for example packet
processing may be pipelined from one group of ctoeanother group of cores performing
to different stage of the processing. This is g/ \exible and configurable system which
enables programmers to better exploit the processailelism.

An other important field useful to order and symsfize related works is the tag field.

There are three different tag types:
* ORDERED that guarantees ordering of works with this tggety

* ATOMIC that guarantees ordering and atomicity, so thatgigces of work

with this tag type cannot be scheduled at the dame
* NULL that does not guarantee ordering
Core software can change the tag value via a taglstwansaction.
Typically a piece of work is scheduled to a coreewlcore software executes a
GET_WORK transaction to request a new work. Thbeatations of works is sequential: no

work can be scheduled to a core which is executingcheduled work or is already

elaborating some work.

A.2.5 Free Pool Unit
129

A.2. Cavium Octeon CN38XX

The Free Pool Unit (FPA) maintains eight pools oinpers to free L2/ DRAM memory.
The FPA hardware implements a data structure thatoaimates a logical LIFO for each
free pointer pool. Both core software and hardwamés use these pool. When a pool is too
large to fit in-unit store the FPA creates a treacture in DRAM using freed memory in
the pool to store extra-pointer. Pool O is a spep@ol, since PIP stores packet data.
Moreover PIP allocates work queue entries fromag@mmable pool. When one of these

two pools becomes empty PIP cannot receives packets
A.2.6 Packet Output Processing Unit

The Packet Output Processing Unit (PKO) gather&giadrom L2/DRAM and sends
them out on the RGMII, SPI4.2, or PCI interfacéscdn have up to 36 ports for sending
packets to all destinations. The PKO unit suppaptso 128 queues to buffer the packets to
be sent out to the 36 available hardware portsh Epact can have a variable number of
queues (up to 8) attached to it.

The system actually queues commands in these buffstead of only packet data. In
fact each packet transfer is a command. PKO pedgaanpriority arbitration among the
gqueues to decide which command is to be executsd fi

PKO unit has also a specialized hardware to cakeulee L4 checksum. In this case
PKO can buffer the entire packet in its internatst The PKO hardware only reads packet
data from L2/DRAM once to send out a packet, uniielsas to calculate the checksum for a
TCP/UDP packet that is too large to fit in the ingd buffering for a port (which can
contain up to 1,5 KB). The unit can also recreateraplete packet from multiple segments
stored in L2/DRAM, freeing the buffers of FPA caniag the segments. All of these
optional operations are specified in the commarnd glabmitted to the unit by the cores.

The PKO unit uses a priority algorithm that allosvgonfigurable number of queues to

be statically designated as high priority. Whenspr, these priority queues must be the

130

A.2.7. Deterministic Finite Automata Unit

lowest-index queues attached to the port. The ldhaeiqueue index, the higher the priority

of the queue.

A.2.7 Deter ministic Finite Automata Unit

The Deterministic Finite Automata Unit (DFAs a coprocessor used to traverse
graphs in memory. It can be exploited to implemist hardware pattern matching
algorithms.

A DFA is a state machine that receives as inpuyta balue (the DFA alphabet is
made of the 256 possible values of 8-bit) whichseauthe transition from one state to
the next. The states and the transition functiam loa represented by a graph, where
each graph node is a state and different graph r@sesent state transitions for
different input bytes. In the Octeon implementateach node in the graph is a simple
array of 256Next Node Pointers , one for each unique input byte value. Each
Next Node Pointer contains d&Next Node ID , which directly specifies the next

node/state for the input byte, and a tag that cdah three values:
» normal nothing special for this node, continue traversheygraph

* marked the transition should be marked for later analpgisoftware. This is
reported in the result.
terminal the next node is a terminal node and the grapfertsal should stop
As shown inFigure 49 the DFA unit has three main components: the kateHcy
DRAM controller, 16 DFA thread engineBTES and the instruction-input logic, which

includes the instruction queue.

131

A.2. Cavium Octeon CN38XX

CN38XX Low-Latency

DRAM
R DFA Interface 0
PEL »| <€ >
i Low-Latency E 18
Cores LM Bus . DRAM g
36 Doorbell Controller [€—— ?:.i
—» | "l_’i' 6 18
Instruction Queues =2 > '{ "
N = “""|1[_15 DTEs_| Lo '-'Blﬁ i’ﬁlﬂc}'
o —
0B i?;ﬁ? i} - Interface 1
Rl

Figure 40. Architecture of the DFA Unit

The Octeon SDK contains specific tools which crahte graph image to load in the
low-latency memory (LLM) from the regular expresso The user can load as many
graphs as he likes, having the memory size asia lline LLM is is an external memory
with an interface with a data rate equal to theeadock rate. The LLM DRAM controller
can submit many operations to the memory at theestime and can also handle bank
replication automatically in order to encrease dates.

DTEs are independent coprocessors that can tragesipbs. When a core needs the
DFA services, it must submit a command to the DR#ructions queue. The command
contains the pointer to the graph we want to usd,aapointer to the data we are going
to scan. When one of the DTEs is free, it fetch@grding command from the queue
and starts walking the graph loading the packed getenpendently from the DRAM. It

also writes the scanning results back in DRAM aB.we

132

Bibliography

[1]

[2]
[3]
[4]
[5]
[6]

[7]

Ahmed A. Jerraya, "Long Term Trends for Embeddest&y Design,” Digital
Systems Design, Euromicro Symposium on, vol. 00ngp. 20-26, Euromicro
Symposium on Digital System Design (DSD'04), 2004.

Intel. Internet Xchange Architecture network prames. http://www.intel.com
Cavium Networks. Octeon network processors. hitpi.caviumnetworks.com
Xelerated. Xelerator X11 network processor. httypwv.xelerated.com

Bay Microsystems. Chesapeake network processer//ttvw.baymicrosystems.com
M. Baldi and F. Risso. Towards effective portabibf packet handling applications
across heterogeneous hardware platformBVAN 2005: Proceedings of the 7th
Annual International Working Conference on Activel #rogrammable Networks
Sophia Antipolis, France, November 2005.

M. Baldi and F. Risso. A framework for rapid dey@toent and portable execution of
packet-handling applications. ISSPIT 2005: Proceedings of the 5th IEEE
International Symposium on Signal Processing aforination TechnologyAthens,

Greece, December 2005.

133

Bibliography

[8] Lindholm, T. and Yellin, F. 1999 “Java Virtual Maok Specification. 2nd. Ed.”
Addison-Wesley Longman Publishing Co., Inc.

[9] Miller, J. S. and Ragsdale, S. 2003 “The Commorguage Infrastructure Annotated
Standard.” Addison-Wesley Longman Publishing Qua, |

[10] R. Morris, E. Kohler, J. Jannotti and M. F. Kaadhd&he Click modular router,” in
Proceedings of the 1999 Symposium on Operating®@gsPrinciplesDecember
1999.

[11] N. Shah, W. Plishker, K. Keutzer, “NP-Click: A Pragiming Model for the Intel
IXP1200,” 2nd Workshop on Network Processors (NFB&) International
Symposium on High Performance Computer Architest{i®CA), Feb 2003.

[12] G. Memik and W. H. Mangione-Smith. NEPAL: A framewdor efficiently
structuring applications for network processord?tac. of Network Processor
Workshop in conjunction with Ninth Internationaingyosium on High Performance
Computer Architectur@HPCA-9), Feb. 2003.

[13] Glen Myers, “Overview of IP Fabrics’ PPL Languagel &irtual Machine,” White
Paper, Online: http://www.ipfabrics.com/pdf/Ovewieof PPL_and_VM.pdf

[14] J. Wagner and R. Leupers. C compiler design fandustrial network processor. In
LCTES '01: Proceedings of the ACM SIGPLAN workstrojphanguages, compilers
and tools for embedded systemages 155-164, New York, NY, USA, 2001

[15] R. Ennals, R. Sharp, and A. Mycroft. Task Partingrfor Multi-core Network
Processors. I€ompiler Constructionvolume 3443/2005 dfecture Notes in
Computer Sciencgages 76—90. Springer Berlin/Heidelberg, Marc®520

[16] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu,.TLiu, and R. Ju. Shangri-la:
achieving high performance from compiled networglagations while enabling ease
of programming. IrPLDI '05: Proceedings of the 2005 ACM SIGPLAN cagriee on
Programming language design and implementatpages 224-236, New York, NY,

USA, 2005. ACM.
134

Bibliography

[17] Turner, R. 2007. Understanding Programming Langsiagends Mach. 17, 2 (Jul.
2007), 203-216

[18] Plezbert, M. P. and Cytron, R. K. 1997. Does “jndime” = “better late than never?”.
In Proceedings of the 24th ACM SIGPLAN-SIGACT SymposiuPrinciples of
Programming Languagg®aris, France, January 15 - 17, 1997). POPL '97

[19] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park, Juhpg, Seugll Lee, Jinpyo
Park, Yoo C. Chung, Suhyun Kim —“LaTTe: A Java \dlbt-in-Time Compiler with
Fast and Efficient Register Allocation”

[20] Andreas Krall — “Efficient Java VM Just-in-Time Ceitation”, in Proceedings of
PACT’98, 12-18 october 1998

[21] Andreas Krall, Reinhard Grafl - “CACAO — A 64 bavh VM Just-in-Time
Compiler”, in Proceedings of the ACM PPoPP’97 Wabidgs on Java for Science and
Engineering Computation.

[22] Ali-Reza AdI-Tabatabai, Michal Cierniak, Guei-Yuhneh, Vishesh M. Parikh, James
M. Stichnoth — “Fast, Effective Code Generatiomidust-In-Time Java Compiler” In
Proceedings of the ACM SIGPLAN '98 Conference oogfamming Language
Design and Implementation, Vol. 33, No. 6, 1998

[23] Gupta, R., Pande, S., Psarris, K., and Sarkar9¥9.1Compilation techniques for
parallel systemdRarallel Comput25, 13-14 (Dec. 1999)

[24] Lee, E. A. 2006. The Problem with Threa@esmputer39, 5 (May. 2006), 33-42

[25] O. Morandi, F. Risso, M. Baldi, and A. Baldini. Etiag flexible packet filtering
through dynamic code generationI@C 2008: Proceedings of the IEEE International
Conference on Communicatigorigeijing, China, May 2008

[26] O. Morandi, F. Risso, G. G. Moscardi. An Intrusidetection Sensor for the NetVM
Virtual Processor. IiProceedings of the The International Conferencénbormation

Networking 2009ICOIN 2009) , Chiang Mai, Thailand, January 200

135

Bibliography

[27] Johnson, E. J. and Kunze, A. 2002 Ixp-1200 Progremgunintel Press.

[28] F. Risso, M. Baldi, NetPDL: An Extensible XML4¥d Language for Packet Header
Description, Computer Network€COMNET), Vol. 50, No. 5, Elsevier, pp. 688-706,
2006.

[29] Computer Networks Group (NetGroup) at Politecnicdatino, “The NetBee
Library,” August 2004. Available at http://www.nheey/.

[30] Computer Networks Group (NetGroup) at Politecnicdatino, “Analyzer 3.0,”

March 2003. Available at http://analyzer.polito.it/

[31] F. Risso, “NetPDL language specification,” Febru2@@7. Available at
http//www.nbee.org/netpdl/.

[32] Computer Networks Group, “NetPFL language spedificg’ August 2008. Available
at http://www.nbee.org/doku.php?id=netpfl:index

[33] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegnaarg F. K. Zadeck. Efficiently
computing static single assignment form and thérobdependence graph. ACM
Trans. Program. Lang. Syst3(4):451-490, 1991.

[34] S. S. Muchnick. Advanced compiler design and imgetation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997.

[35] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy S. Oberg, and S. W. Reeves.
Fast copy coalescing and live-range identificatlarRLDI '02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming languksgegn and
implementationpages 25-32, New York, NY, USA, 2002.

[36] C. W. Fraser, R. R. Henry, and T. A. ProebstinggBtast optimal instruction
selection and tree parsifglGPLAN Not.27(4):68—76, 1992.

[37] L. George and A. W. Appel. Iterated register caalegs ACM Trans. Program. Lang.
Syst, 18(3):300-324, 1996.

[38] P. Briggs, K. D. Cooper, and L. Torczon. Improvetsdn graph coloring register

allocation. ACMTrans. Program. Lang. Sysf.6(3):428-455, 1994.
136

Bibliography

[39] D. Bernstein, M. Golumbic, y. Mansour, R. Pinter,@ldin, H. Krawczyk, and I.
Nahshon. Spill code minimization techniques foriming compliers. In PLDI '89:
Proceedings of the ACM SIGPLAN 1989 ConferencerogrBmming language
design and implementatippages 258—-263, New York, NY, USA, 1989. ACM

[40] Intel Corporation , 2008, Intel® 64 and IA-32 Artgdtures Software Developer's
Manual Volume 1: Basic Architecture

[41] A. Korobeynikov. Improving switch lowering for them compiler system. In
SYRCOSE 2007: Proceedings of the 2007 Spring YRasgarchers Colloquium on
Software EngineeringMoscow, Russia, May 2007.

[42] A. V. Aho and M. J. Corasick. Efficient string miiieg: an aid to bibliographic
searchCommun. ACM18(6):333-340, 1975.

[43] J. Carlstrom and T. Boden, Synchronous dataflowitecture for network processors,
IEEE Micro, vol. 24, no. 5, pp. 10-18, 2004.

[44] J. L. Hennessy and D. A. Patterson, Computer Agchiure: A Quantitative Approach.
San Francisco, CA, USA: Morgan Kaufmann Publishecs 2003.

[45] J. A. Fisher, “Trace scheduling: a technique faibgl microcode compactionfEEE
Transactions on Computergol. 30, no. 7, pp. 478-490, July 1981.

[46] M Roesch, Snort - Lightweight Intrusion Detectian Networks, inProceedings of
the 13th Systems Administration Conferefid8A '99), Seattle, WA, November 1999,
pages 229-238.

[47] Y. Charitakis, D. Pnevmatikatos, E. P. Markatosl KnG. Anagnostakis, “Code
generation for packet header intrusion analysitheriXP1200 network processor,” in
Proceedings of the 7th International Workshop oftv&re and Compilers for

Embedded SysterfS8COPES 2003), September 2003.

137

Bibliography

[48] R. Sidhu and V. K. Prasanna, “Fast Regular Exprvad¢giatching using FPGAS”, In
Proceedings of the IEEE Symposium on Field-PrograbenCustom Computing
Machines(FCCMO01), April 2001.

[49] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, antlv. Lockwood, “Deep packet
inspection using parallel Bloom filters,” ot Interconnects(Stanford, CA), pp. 44-
51, August 2003.

[50] Nathan Tuck, Timothy Sherwood, Brad Calder, andrGe®arghese. “Deterministic
memory efficient string matching algorithms forrurgion detection”. IfiProceedings
of IEEE Infocon?00, pages 333-340.

[51] S. Dharmapurikar, and J. Lockwood, “Fast and stalphttern matching for content
filtering”, In Proceedings of ANCS 200Brinceton, NJ, USA, October 26 - 28, 2005.

[52] F. Yu, Z.. Chen, Y. Diao, T. V. Lakshman, and RKdtz, “Fast and memory-efficient
regular expression matching for deep packet ingp€ctin Proceedings of the ANCS
2006 San Jose, California, USA, December 03 - 05, 2006

[53] Y. H. Cho, and W. H. Mangione-Smith, “A pattern otahg coprocessor for network
security”, InProceedings of the 42nd Annual Conference on De&Sigamation(DAC
05). San Diego, California, USA, June 2005.

[54] R. T. Liu, N. F. Huang, C. N. Kao; C. H. Chen, C.Ghou, “A fast pattern-match
engine for network processor-based network intrudietection system”, in
Proceedings of the International Conference onrimftion Technology: Coding and
Computing(ITCC 2004), Volume 1, pp. 97 — 101.

[55] A. Begel, “Applying General Compiler Optimizatiottsa Packet Filter Generator”.
1996. Available online at
http://www.microolap.com/downloads/pssdk/literatbegel96applying.pdf

[56] R. J. Clark, M. H. Ammar, and K. L. Calvert. “Mulrotocol architectures as a
paradigm for achieving inter-operability,” Froceedings of IEEE INFOCOM\pril

1993, pp. 136-143.
138

Bibliography

[57] A. Begel, S. McCanne, and S. L. Graham, “BPF+: eXiplg global data-flow
optimization in a generalized packet filter arctiitee,” InProceedings of the
Conference on Applications, Technologies, Architess, and Protocols For
Computer CommunicatioislGCOMM '99, September 1999, pp. 123-134.

[58] Gary Lidington. Programming a data flow processmailable Online at
http://www.xelerated.com/uploads/files/54.PDF, $epbter 2003

[59] MIPS Technologies Inc., 2005. Mips64® architectiareprogrammers volume I:
Introduction to the Mips32® architecture. Availaloleline at

http://www.mips.com/products/resource-library/prodmaterials/mips-architecture/

139

